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Luttinger Liquid and Momentum Resolved Tunneling between Quantum Wires

Luttinger liquid model of 1D interacting quantum system
e The Luttinger liquid is a stable fixed point of 1D quantum systems with gapless
excitations

e The Luttinger liquid systems of 1D interacting Fermions often have separate spin and
charge excitations propagating at different speeds

e The Luttinger liquid systems exhibit universal low-energy behaviors determined by only
four phenomenological parameters: the velocities v, 5 and “interaction strength” K,
for spin and charge excitations. For a SU(2) invariant system K; = 1.

Momentum resolved tunneling as a spectroscopic tool for 1D electron system

e High mobility quantum wire formed at the edge of 2DEG is an excellent 1D interacting
electron system

e Tunable tunneling conductance between the wires provide an new window into properties
of the quantum wires



Schematic Diagram of Experimental Setup

Tunneling conductance is G = dIr /dVsp. Ex-
periments measure dG/dV, to pick out physics

sensitive to density.
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Theory of Tunneling Conductance

At zero temperature, only the tunneling between ground states contributes. The tunneling
conductance G o< [M(k.)|*+ |M(k_)|?, where

ki =4k +eBd/h

and

MK) = (%]} V1)
It is instructive to define a “quasi-wavefunction”:

Wei(x) = () yo(x) W) |

then
/ dxe™ PN (x)

For non-interacting wire ¥ is simply the wavefunction of last occupied electron.



Overall Features of Experimental Data

Key Features:
e Extended state: density n changes
continuously with gate voltage V,,

momentum dependence of tunnel-
ing sharply peaked at k = +kg(n).

e Localized state: density n changes
discretely with gate voltage V,, mo-
mentum dependence of tunneling

extended over a wide range of k.
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Self-consistent Confining Potential Generated by Interaction?

hypothetical self-consistent potential in the localized phase



Part I: Momentum Dependence of Tunneling Conductance

Basic features of momentum distribution:

e Broad momentum distribution, implying
localized electrons

e Typically two broad peaks, the separation
between which widens with increasing parti-
cle number N

e Last Coulomb blockade peak has single
[d] peak in momentum distribution
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Non-interacting Electrons, T = 0, Box with Hard Wall

As large N, |M(k)|* becomes peaked at ky = N7 /L with width 8k = 27 /L.
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Screened Coulomb Interaction Potential

The Coulomb interaction in the short upper wire is assumed to have a short-range cutoff
due to the finite width of the wire and long-range cutoff due to screening by the more
conducting lower wire.

- - Vi(g,d
Veir(q) = Vo(q,W,) — % 7

where Vo(q, W) = fjx,dx\/ezi—qLW2 = 2Ky(Wq). Ky is modified Bessel function.
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Formation of Quasi-Wigner Crystal Order with Lowering Density

Instead of the Friedel oscillation of frequency 2Kg, clear oscillations of frequency 4ky show
up, both in density and in density-density-correlation, at low density. Here density-density

. . . . 1 1—x / / /
correlation function is defined as — [, ~ p(x')p (X' +x)dx’.
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Ground State Tunneling: Exact-Diagonalization

|M (k)|? is insensitive to interactions. Following plot show |M(k)|? for tunneling from N =3
to N = 4 state.
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Spinless/Polarized Electrons

Under the experimental parameters, spinless electrons are essentially non-interacting for
both high and low density.
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Large-N limit: Ground State Tunneling

For large but finite N and not too close to wall, Luttinger liquid theory gives an estimate
of the ground state quasi-wavefunction as defined before:

1 l(OCen —OC)
P (x) ~ Tive [sin (%)} 2 sin(kgx) ,

where tunneling exponent for bulk and end is given by Luttinger liquid interaction parameter
gasa=(g+g '—2)/4and @y = (g ' —1)/2, respectively. A normalization factor N,
is used so that the integrated areas under the three curves are the same.
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Estimates of Effective Heisenberg Exchange Constant J

At strong interaction, the dynamics of system can be described by Heisenberg model. The

Heisenberg exchange parameter J can be extracted from gap A between ground state and
first excited state. For N=2 J=A and for N =4 J = 1.5178A.
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Tunneling Conductance at Finite Temperature

Total Conductance G = C(A(k, )+ P (k_)), where
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Finite Temperature and Mixing Spins: Exact Diagonalization

For strong repulsive interaction, spin excitation energy scale A =J/N may become very
small. Three energies scales are important: spin gap A, Zeeman energy E; and thermal
energy kgT. Following picture shows tunneling from N =1 to N = 2: the case of sin-
glet ground state (Ez < A), triplet ground state (Ez > A) and high temperature mixed

state(Ez, A < kpT << Acharge).
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Finite Temperature and Mixing Spins: Free Spin Regime and Large N limit

If J < kgT << hv.kp, spin configurations have equal thermal weight but there's no charge
excitation, we find a spectral weight as following:
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Here i1 = %\/2gln(L/a) is the root-mean-square fluctuation of electron position. g is the
Luttinger liquid interaction parameter.



Conclusions for Part |

We investigated the momentum dependence of tunneling matrix elements from a infinite
wire into short quantum containing interacting electrons.

e For N < 4 exact diagonalization is carried out, ground state tunneling matrix element
|M(k)|? is computed.

e Large N calculations of tunneling amplitude, both for ground state tunneling and for free
spin regime, are carried out using Luttinger liquid theory.

Other Possible Factors in Accounting for Experimental Observation

e Soft instead of hard wall confinement: more spectral weight at center.
e Partial spin polarization
e Asymmetry of confinement potential



Part |I: Electronic States of Low Density Region

Model geometry for the electronic density distribution p(x) and gate potential V,(x)
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The Restricted Hartree-Fock Hamiltonian

Assumptions and simplifications of the Hartree-Fock model:

e Spin restricted to be either aligned or anti-aligned with magnetic field B
e Two subbands corresponding to different transverse modes in the quantum wire

e Electrons in different subbands interact only through Hartree terms
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Magnetic Phases at the Low Density Region

e The emergence of an antiferromagnetic order at the low density region (left)

e The emergence of spin-aligned region at the center of the wire (right)
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Discrete Density Changes in the Spin-aligned Phase

Abrupt density rearrangements occur due to the successive expulsion of a single electron
from the spin-aligned region
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Nature of Electronic States in the Spin-aligned Region

e The wavefunctions near the Fermi level have large weights near the center
e No sign of self-consistent barrier at the ends of spin-aligned region

e Little spectral weight near k =0 in the momentum-dependent tunneling matrix element
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Unrestricted Hartree-Fock in a Homogeneous system: Effects of Canting in
the Antiferromagnetic Phase

e The correction to the energy per unit cell due to canting is small in the range where
the ground state is antiferromagnetic

e The S, magnetization is small for canted solution at p = 16um ™!, where the system
make a transition to a ferromagnetic ground state
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Conclusions for Part Il

We investigated the density and spin configuration an inhomogeneous quantum wire using
the restricted Hartree-Fock method. We found:

e When lowering its density, the depleted region goes from a non-magnetic state to an
antiferromagnetic state, and finally to a spin-aligned state sandwiched by antiferromag-
netic states

e In the spin-aligned phase, the spin-aligned region undergoes abrupt density changes by
successively losing a single electron

e The wavefunctions near the Fermi surface are relatively localized near the center, but
they are not Coulomb-blockade states confined by barrier potentials

e Additional mechanisms, such as impurity potentials or multiple spin state contributions,
are needed to explain the observed large spectral weigh near k = 0 in the momentum
dependent tunneling

e In our model, the effects due to the canting of the spins in the unrestricted Hartree-Fock
model are small



