Quantum technology,
group theory, phase space
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Mathematics based on
Lie groups and Cartan
spaces

* Expand density matrix
on a complete basis:

e Basis should
have a unit trace:

* Normalized ‘probability’
may be real or complex:




+P PHASE-SPACE METHODS

The positive P-representation expands in coherent state projectors

p= [ Pla.B)A(.B)d*ad?p

~ _ |e) (B

Enlarged phase-space allows positive probabilities!

@ Maps quantum states into 4M real coordinates: a,B = p+ix,p’ + ix’
@ Double the size of a classical phase-space
@ Exact mappings even for low occupations

@ Advantage: Can represent entangled states

P. D. D. and C. W. Gardiner, J. Phys. A: Math. Gen. 13, 2353 (1980).



Send N single photons through
an M-channel photonic device

e Measure the output photon
number distribution

This solves the exponentially hard
problem of generating random bits
with permanent distribution

e Matrix permanents are a '#P' hard
problem, taking exponentially long
times to compute at large N

J




Boson sampling experiment: macroscopic

quantum cat

o — 01010 10!
—> | i
—> | i
—_— ! !
— rrnn v
k={5,6,7.8} Yy yyyvvy




-

Xperit
Oxtord, Vienna, Queens




Why is boson sampling hard?

There are exponentially many interfering paths!

@ The N-photon probability is a matrix permanent

o
2

= ;H Tio(i)

@ Here T=+/1—7yU: Uisan N x N (sub)unitary, ¥ a loss
o Standard methods take N x 2N operations

@ TRILLIONS of years for N =100 at 1GFlop

@ Impossible even on the largest supercomputers

LARGEST PERMANENT EVER CALCULATED 'EXACTLY’:
N=50, TIANHE Il, wu et al, Nat. Science Review, 5 715 (2018)




Complex P-representation-

‘complex weighted sampling’
The N-mode, N-boson state,

e%P; dadej
(aiB;)?

Result for the output characteristic function:

¢ $P(@,B)et TP Tedadp.

@ Exact unitary averaged output depend on the input photon
number N:

eV (i
<x(out)(§)>U=(M_1)!{’:( t117) ()

A I (M—1+))!



Individual unitary simulation — possible at

any size, but count rates get small

Randomly sample the complex-P contour integral;
simulates any permanent much better than experiment —

Speed-up over a million times already at k=6, N=20
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b etter t !h 1an experimental error!

How do we interpret this result?

o Complex-P error in |P|? decreases rapidly with matrix-size N
@ But, the experimental sampling error is proportional to |P|

e We calculate |P|* better than experiment!

@ Don't generate a digital bitstream - doesn’t solve a #P problem
@ Can verify ANY possible N-th order correlation!

@ Problem: correlations too small to measure at large N




s it useful? YES: Quantum Metrology!

* Use a multichannel Quantum Fourier Transform
— Enhances phase gradient measurement by N
— Proposal by Rohde & Dowling groups
— Ultrasensitive phase gradient measurements

* How sensitive is this to phase decoherence?

—Can compute 100x100 permanents

— Conventional supercomputer limits 50x50 (Tianhe II)
— Would take trillions of years with standard methods

Opanchuk et. al, Optics Letters 44, 343 (2019).



Boson sampling enhanced metrology




Strong fringes EVEN with added

decoherence!
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Exactly soluble
model

Now used in LIGO,
guantum cat
experiments at Yale

J




Hamiltonian

Parametric interaction including x(3) nonlinearity
Pump (k = 2) & downconverted field (k=1): H=h/Y¥% ;¥7_, H,E"):

H,gl) = fkaz + h.c.] + HE  [Linear damping]

H,£2) — S( )azz + h.c.] + HE?  [Nonlinear damping]

H(3) - H(4) = a)kakak - [igkaZe_ikat - h.c] [Linear coupling]

(5) I H( ) _ % a;(2 az 4 [/Ea a1 + h. c] [Nonlinear coupling]




Two-mode problem mapped into an one-mode equivalent

Result of adiabatic elimination is a new complex FPE

Equivalent 2
qSingle %Z{%[Ya—t%—c?(a)aﬂ+%aa—a2£(a)+hc}P1.
mOde Here:
equation e(a)=e—yo

EIK'éaQ/'}Q
=12+ i+ x?/2p




Exact complex P-function solution

FPE has an exact steady-state solution
Pi(a) = Nexp[—®(a)],
Introducing dimensionless parameters ¢ = (y— x)/x and A. = €/,

¢ () = —20ta—cln[Ac — a?] — c*In[Af — o2,
The steady-state probability distribution is given by

Ps(a)

N(/‘LC . (Xz)C(A: - a+2)c* eZO(“LO(.

Feng-Xiao Sun, et. al, New Journal of Physics, 21, 093035 (2019);
Physical Review A 100, 033827 (2019).



Dimensionless variables

Scale parameters to get universal behaviour

o Let: B=a/vAc and BT =at/\/Ax
o We introduce A = [Ac| and A (B) = A (1—B2).

In the scaled coherent space:

Ps (E) = N(1—B9)(1— ﬁ+2)c*e2w+ﬁ.

Boundaries: probability vanishes at f = 41, B = &£1.




Manifold of coherent amplitudes

B = x-+ixtan(¢@)cos” (xm/2)cosP (yx/2),
BT =y—iytan(¢@)cosP (xm/2)cosP (ym/2).

Manifold is a 2D surface in 4D phase-space




Potential for tunneling

() Re(?®)




Tunneling:
How to escape a local minimum

Swanson-Landauer theory, with complex potentials

Analytic formula valid in the large barrier limit

o7 _opld ]2
= vV (O)_ (C)
T T2 [¢£‘?¢Eﬁ)¢$‘;’} A

Simplest case: no anharmonic term (Im(y)=0), let c=c+1/2:

1

= |Z| [)L(/Jlttaéyl zeXp{z [/l Seoen @)] }

Can also calculate numerically with number states - red circles below




Tunneling rates versus pump amplitude

Re(¢)(kHz)



Tunneling rates versus anharmonicity
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Steady-state moments

@ Exact solution
/,f,);, o< Z (2?;7') (—\/ ),C)”’gFl(—m — n’, c+1,2c+2, 2)

X (—v/A)"2Fi(—m—n,c"+1,2¢" +1,2)
@ Wolinsky & Carmichael (PRL) :

It [(f )" (VA +(=V/A)" (=AY
e (V) (V22 + (Vaey (—vAg)] 77

@ Schrodinger Cat:

It = [(f )" (VA" +(—VA)" (—V/AE)]
e (VA" (V)" + (V) (—v22)"]




Schrodinger cats only form as transients!

Cats CAN form, but not steady-state
@ Steady-state solution exists at strong coupling
@ For R (c) <0 get a pole at the boundary
@ Weak coupling manifold is unstable

@ Must change to a new manifold

o Steady-state Wigner is positive (Reid&Yurke) = NO Cat

Work on transient cats-

o M. Reid, B. Yurke, Phys. Rev. A 46, 4131 (1992).
o L. Krippner, W. Munro, M. Reid, Phys. Rev. A 50, 4330 (1994).
@ W. Munro, M. Reid, Phys. Rev. A 52, 2388 (1995).

>
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Universal guantum
computers have
decoherence,
scaling problems

Alternative:
Dedicated hardware
for NP-hard problems




The Ising machine: a paramp network

Pump SHG
pulse pulse Signal DOPO pulses LO

g f\. #2 #1 pulse
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CIM

Simulations

Can be simulated with
complex/positive P

Already reaches 2000 qubits in size

Solves 100 times larger problems than
D-wave

NTT Phi-lab opened in San Jose in July

Joint research program with SUT

New techniques for deep quantum
regime




yint

* First principles quantum simulations
Nonlinear model
Entanglement agrees with experiment



Hamiltonian

H/h=68d"a+ w,b'b+ xa'ab + b")
+iE@®)@" —a)+ H,.

Standard model for nonlinear optomechanical
Hamiltonian

A. F. Pace, M. J. Collett, and D. F. Walls, Phys. Rev. A 47, 3173 (1993).



Exact positive-P stochastic equations

da = {E(t) — [i8k +ix(B+ B7) + vola}dt +dWy,
dB = [—(iwm + Ym)B — ixaa™dt + dWs,
={E*@)+ i +ix(B+B")—yolaT}dt +dW/,
d,BJr = [(wm — Ym)BT +ixaatldt +dW,,

o = \/2Yexdar — d a;‘q,

" = /2Vexida T doz;:tn (2.8)

Internal photon and phonon modes, plus external input and output
reservoirs are ALL included in the exact dynamical equations



Light and matter entanglement:

theory vs JILA experiment

PHYSICAL REVIEW A 90, 043805 (2014)
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Data from: T.A. Palomaki, et. al., Science 342, 710-713 (2013).



Proposal: entangle two oscillators using a
quantum memory

Entangled _
states Beamsplitter

.ﬂ . « Kk =k(t)
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Q. Y. He, M. D. Reid, E. Giacobino, J. Cviklinski, P. D. D., PRA 79, 022310 (2009).
S. Kiesewetter, R. Y. Teh, P. D. D., and M. D. Reid, Phys. Rev. Lett. 119, 023601 (2017)



Essential feature: temporal
mode-matched input/output

Must have temporal mode-matching
to ensure high-fidelity single-mode input

Ui (8) = —2 Vike + m)ni”+ =) Rt i (mt) e+ O (1)

where ki = (Vo +7m) /2, k= = (Yo —Tm) /2

This ensures perfect, temporally mode-matched input and output



Predicted
entanglement
as a function

of storage
time
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Download photonic cat to a massive
mechanical cat - see Yale experiments!

Wigner function W

Note: this is a very pure cat!



Schrodinger Cat predictions

Phys. Rev. A 98, 063814 (2018).

Input Schrodinger cat positive P-representation

| 1 )
P (ay') = N [5+,+ +6_ e ol (6, 4+ 5—,+)]

This is the input to the sampled equations, then used
to calculate the output Wigner function of the stored cat state

N

W (0) m—2 3w () 2000 o) o)

1



Result of simulated mode-matched

injection and retrieval
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Parameters used are taken from:
(‘100 photon’ CAT at Yale): C. Wang et al Science, 352, 1087 (2016).



Rubidium
experiment at
SUT

Longest coherence
time of any BEC
interferometer




Bose gas master equation,

finite temperature

A D-dimensional Bose gas has two spin components that are
linearly coupled by an external microwave field.

H=h / d3x [ VUIVY; 4V, (x) UT, +g;f I, + fojffo3_,-]

Here, gjj is the self- and cross-coupling in D—dimensions.
Collisional damping follows a master equation,

g:_%’ A.6] + ¥ ke [ dx [20150} — 60up — 50} 0]

This includes self- and cross nonlinear damping, with




* Take an initial finite temperature state
* Represent density matrix with Wigner

* Nonlinear chemical potential eliminates
Bogoliubov ‘gapless’ divergence problem

* King et. al., Journal of Physics A: 52,
035302 (2019).

Initial finite

temperature
state

A

K=H—mN “;NQ




Wigner phase-space: 1/N expansion

Result of Wigner operator mappings:

. 1 -
W = {——V;2 + 7y v +ycw]wj} vi -y,

30
£ 0£+B,-j[w] n; (t,x)

Scaling: T=1t/ty, { = x/x,

to = 1/gn; xo = fi/\/gnm; (AF(E)AG*(')) = 58 (£ - ') .




. Interferometry on an atom chip
(Sidorov, Swinburne)

~
~ s’ = g
~ .’
=g X p=
’ \~ ’
So ,7’
A
N b ~s,” d
| >b ¢ >




axial coordinate (um)
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Rubidium interferometry

be coupled via an RF field.
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A two-component, 4 x 10* atom 8" Rb BEC is in a harmonic
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Computed vs observed 3D fringe visibility

0.2 - ——— simulation
[ experiment
O-O | | | | |
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Calculate dynamical
condensate occupation

Combine with fringe visibility

Evidence Evidence for macroscopic
fOr 40’000 : ' entanglement
atoms
entangled




Joint program with
UMass, Tel Aviv,

Experiments at Rice U.

King Ng, Bogdan
Opanchuk, Margaret D.
Reid, P.D.D.,

Phys. Rev. Lett. 122,
20364, 2019




One-dimensional Bose gas Swinburne

Hamiltonian

R A 2 .
Hip = /\I’JrDHl\Ilede + g12D (\DID) Uipdrs

H, = —h?02/2m + mw3ir3 /2

gip = 2hw, a
|
ré = hto/2m
}
z = r3/ro;th = /roWip; T = t/to; . (2) = 0:90(z)
|

= [ [0+ 0 (316) &2(;:)]

C = mguj)ro/h2

SCIENCE | TECHNOLOGY | INNOVATION | BUSINESS | DESIGN



Conservation laws Swinburne I

Local symmetry from Noether’s theorem leads to globally
conserved quantities

1.Particle number N = gﬁ»k

2.Momentum P= Lkam

3.Energy H= zk: k27, + ‘E Xk:dz,&lgdks&mdk

4 Higher order term Zk% - E (k1 + ko) &}, @] gy g O
k

Quench experiment:

= Make an attractive soliton, increase coupling by 4x

=  Exact solutions, DMRG — fail at N>5

SCIENCE | TECHNOLOGY | INNOVATION | BUSINESS | DESIGN



Conservation laws: Truncated Wigner Swinburne I

1.00050
Z
 Conservation of S
1.00000
e 0 1 2 3 4 5
quantities In .
Wigner
representation ,
0 1 2 3 4 5
1
(¥), = (N — 201
P),, = (P |
1 MC 0 1 2 3 i '
<H> <H - —N> — Mo+ S .
<H3> < 3 — —P> m%l
W T

o1 -

Ref: Physical Review A 96, 043616, 2017 0 1 2 3 4
Black:exact classical result; blue: Truncated-Wigner error bars ‘
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Truncated Wigner: breather relaxation Swinburne

a (a)
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T T

Ref: Phys. Rev. A 96, 0563628, 2017

* Gradual fragmentation * Decay of breather

SCIENCE | TECHNOLOGY | INNOVATION | BUSINESS | DESIGN 12



Multimode Schrodinger cat
Soliton splits either way, 3:1 number ratio

Pr(N, ), 7= 10.000
T

P(N x>0

0.01 % 4
W 0
0.005 ] :
0 | 1 1 1
0 100 200 800 900 1000

L 1 I 1 I
300 400 [00 600 700
N [x>0

Also see: Yurovsky et. al, Phys. Rev. Lett. 119, 220401 (2017)



Truncated Wigner: multi-mode evolvement Swinburne I

* Single eigen-mode evolves

1000

to multi-eigenmode (~7)

O
1

~
1

100

* Partial fragmentation

eigenvalue
population

m
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10
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o

—
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w
oS
wm

Ref: Phys. Rev. A 96, 053628, 2017
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Second-order correlation: g?)(x,,x,)

11.06

1.04

1.02

—

0.98




Time-evolution of left-right
number difference.
Agreement of exact +P and
truncated Wigner state, with

either number state or
Poissonian initial conditions.

Experiments at Rice U.




Quantum field theory: exponentially
complex

Essential to current theories of
cosmology

How can we compute what theory
predicts?

Energies a trillion times larger than CERN

J

Check predictions with computer
simulations




How can we test theories of the Big Bang?

Now
13,700,000,000 YEARS
AFTER BIG BANG

| & g = Planck  spacecraft  was
L — | launched in May 2009. On

L

21  March 2013, the
. AN mission’s all-sky map of the
8,700,000,000 YEARS
CMB was released

The CMB is a snapshot of the oldest light in
1060.000/000 venme our Universe, imprinted on the sky when the

AFTER BIG BANG

< §
A
)
%
%
o\

GALAXY EVOLUTION
CONTINUES...

FIRST STARS

400,000,000 YEARS
AFTER BIG BANG

Universe was just 380,000 years old.

CosMIC MICROWAVE
BACKGROUND

400,000 YEARS AFTER
BIG BANG

INFLATION

BANG We can’t see beyond that  BGV theorem




Quantum models of the Big Bang

e vacuum

10+ Fils

Vetf
4
(IO“GeV ) S

1

True vacuum

Potential energy on top of the hill is
converted into kinetic energy of the
rolling ball at the bottom of the hill.

As a result a lot of energy was
realised resulted in

N/ T—— BIG BANG

0-5

In reality the Universe has
at least 3 dimensions.
Bubbles appear during the
transition to true vacuum.

Are we in one of the
bubbles....lonely....?

1-0 -5

—qS/uol5 GeV) —> t ~ ]_0_3259(:

Similar to water boiling or bubbles in champagne



What is the observational evidence?

Planck spacecraft, Bicep 2, Polar Bear,
21 March 2013 South Pole Telescope
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Analog quantum simulator

Take 2 BECs and couple them ’
with a laser light.

_

Stable Unstable
¢1 - ¢2 ~ @ (true vacuum) (false vacuum)

=0 ‘ f=m

Their phase difference behaves like
a pendulum, which has stable and
unstable points.

10} False vacuum

Vet

820 — 2V20 = —9pV(0) e -

-- relativistic field equation of the early !
0-5 1-0 1-5

Universe. — $/110° Gev) —>




Early universe models

m The simplest model has a scalar inflaton field
m Relativistic, interacting quantum field dynamics
B ¢(x) is described by the Lagrangian

1
Z = 5 u‘l’a”‘f’ - V(‘f’)a

where V(@) is the potential down which the scalar field rolls



Early universe quantum simulation

41 K Feshbach resonance

m zero inter- state scattering length at 685.7 G

m nearly equal self-interactions,
m unknown loss rates (can be estimated)
m resonance not yet observed



Potential well with microwave coupling




Equivalent Sine-Gordon equation

ll/l :ue’(¢5+¢a)/2 COS(O)
Y, =ue'(9s792)/25in(9),

m Canonical momentum: @ = 0;0,/4%a,

m Commutators: ¢, (C),n(g')] =i6P (¢ - C') .

m Sine-Gordon equation:

V2¢a — 8§0§0¢a + asing, =0



Effective potential
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Vacuum bubbles expand at light-speed
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Metastable 2D Universe: BEC simulations



SUMMARY

Positive P-representation

Exact intracavity open quantum dynamics, opto-
mechanics, Schrodinger cats

Complex P-representation
Exact Boson sampling quantum simulations —large mode

numbers, huge permanents

Wigner representation

Treatment of large BEC systems with 1/N expansion,
millions of modes possible

Next step:
Stochastic bridges, interacting Fermi phase space



