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OUTLINE

 Why do we want a phase-space for fermions?

e Gaussian operator bases

* Definitions of Q-functions and P-functions

* Results for completeness and resolution of unity

e Results for differential identities, Fermi shockwaves

* APPLICATIONS TO FOUNDATIONS OF QM MEASUREMENT



Stochastic phase-space methods have many applications for
carrying out quantum simulations. Some previous results:

Exact solutions for quantum optical time crystals.
Dynamical simulations of million-mode interacting BECs.
Simulations of optomechanical entanglement.

Fermionic problems are even more challenging: there is usually nc
means to sample the density matrix probabilistically. In this talk
some recent advances for fermions will be treated, including

B A generalized Q and P-function definition applied to fermions
B Identities for mapping fermionic operators
B Examples: finite temperature shock waves, collective modes



What about many-body fermion and majorana systems?

Laser light

Lattice spacing: d=A/2 (A: laser wavelength)

/ ~several hundred
. e nanometers
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fermions to & .
. \jﬁet
model High Tc
superconductors:

Fermi-Hubbard model

Periodic traps are formed by imerference among laser lights injected
from four different directions.



Fermi-Hubbard model

R M M

H=Y t;C,¢o+ U)Y ¢henc ciy
I,J,0 I

Where:
@ U as the on-site Coulomb interaction,
e 1 the chemical potential,
@ M the number of the lattice sites and

@ the transfer integral between the i-th site and the j-th site as

—U for i =]
tij = { —t for (i,j) being a nearest neighbour
0 otherwise



Simple
picture:
Problem —
the ground
state is

still
unknown!




Exponential complexity problem

* Experiments (Harvard) are at 0.25 of the Fermi temperature

* Many different geometries and dynamical properties accessible

* Many-body Hilbert space is exponentially complex

* No reliable method for calculating long-range order.

* How can we understand complex Fermi systems - sign problems?

*|s there another approach apart from number states?

J. F. Corney and P. D. D., Phys. Rev. B 73, 125112 (2006). (Queensland)
T. Aimi and M. Imada, J. Phys. Soc. Jpn., 76, 084709 (2007). (Tokyo Uni)
A. Mazurenko, et. al., Nature 545, 462-466 (2017). (Harvard Experiment, Greiner)



Suppose we have a positive definite, hermitian operator basis
A ()\) defined in a Hilbert space H of quantum mechanical

operators, where ) is a vector in the phase-space domain D.

B A generalized Q-function is defined as the inner product of
the density matrix p with the operator basis:

Q) =1 [2.(5)7]

B Physical interpretation: this is simply the probability of
observing the system in the state A ()\)

K. Husimi, Proc. Phys. Math, Soc. Jpn. 22, 264 (1940)



Suppose we have an operator basis A (X) defined in a Hilbert

space H of quantum mechanical operators, where X is a vector in
the phase-space domain D.

B A generalized P-function is defined as an expansion of the
density matrix p using the operator basis:

p= [ P (X)&(X)au (%).

B Physical interpretation: this is simply the expansion of the
density matrix in terms of states A ()\)

This does not require hermiticity or positivity of A (X) and

Generally different to () owing to non-orthogonality; can use
a different domain.

Roy J. Glauber, Phys. Rev. 131, 2766 (1963).
P. D. D. and C. W. Gardiner, J. Phys. A13, 2353-2368 (1980).



Completeness

We require the following completeness property: the identity
operator I of the Hilbert space can be resolved as an integral
over the phase-space, so that

A(X du ) =1.
| A () (5)
This is called a resolution of unity.

Here du (X) is an associated integration measure on the
phase-space.



B A set of identities that allows all operator moments of

physical interest O,, to be mapped into differential operators
Is required, so that:

Oulh () = Dy (35, %) A (3)

Using the resolution of unity, any observable in the form of an
operator moment can be represented as:

(00) = [ Da(05.%) @ (X) aX



Fermion case

Here we consider normally-ordered Gaussian operators, with unit

trace:
A (g) — \/det [ig . exp [—Q‘L (g_l — 2@ Q/Q] -
with:
- -1 0 nf -1 m
iz[ 0 I]’ and %:[ ~m* I—n]'

The 2M x 2M matrix g is the covariance matrix expressed in
terms of an M x M hermitian matrix n and a complex
antisymmetric M x M matrix m.



We define a "stretched" variable ¢ as:

¢ =

Il

—20 =0 —0.

We also define a normalized Gaussian basis AY, which in terms
of these variables is:

(0= (31-d)s()

S (QZ) Is an even, positive scaling function, invariant under

unitary transformations. These operators have the class-D
symmetry introduced by Altland and Zirnbauer.

A. Altland and M. R. Zirnbauer. Phys. Rev. B 55 1142 (1997)



Resolution of Unity: use matrix polar
coordinates (L.K. Hua)

The Gaussian operator AV (C) are the basis for the fermionic

Q-function. This is a positive hermitian basis.
We have proved the following resolution of unity:

1= [ aci(0).

where d( is the Riemannian measure on the symmetric

Space.
L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (1963).

Laura E. C. Rosales-Zarate, P. D. D., Journal of Physics A 46, 275203 (2013).



he fermionic Q-function is defined for any density matrix,
in terms of the Gaussian basis, as:

2 (¢) = [pAY (¢)]

e The Gaussian operators and the density matrix are positive
definite hence the Q-function is positive.

e From the resolution of unity, the Q-function is normalized to
unity: [ d¢Q (Q) — 1.

e This fermionic Q-function is a non-negative probability
distribution, and it is normalized to unity. It is also defined for
any density-matrix.



In the extended variables, observables can be expressed in normal,
antinormal or nested ordering. We consider the antinormal form

of the observables, which are given by:

» . [ aaf aa’ '
aa = Tr T .
<{— }> P\ 41Tt — (&TT&T)
Using the resolution of unity, the observables can be expressed as:

<{aaag}> — Tr [/dgﬁ {aa - abAN }} |




We prove the following differential identity

AN
{@ cal AN 3} = —ogA" — Q%Q‘FQAN&lnSQ-

Considering the explicit form for the normalization function
S, in the limit S — 1, the observables are given by:

({aa}) = ow [ c@(Qac—5L.
Cvy = 2M —1/2.

Laura Rosales-Zarate and P. D. D., New J. Phys. 17, 032002 (2015).



Thermal Q-function
The density matrix of a thermal state is:

Pth = Nip, : €XP [—&+ (2 — ﬁﬁll) &] = Ay, (nth)
e In this case the Q-function is:

Qin(C) Tr [/A\th (n¢h) /A\III(C)] = %/—Sl (C2) (1 4+ ¢mn€) -

5.(e) = (¢

e Observables are given by:

<2€7J€LJr — 1>th = 3/_11 CQth (€) dC = Gen,



Next we consider Majorana operators, with:

'yl:a—i—aT

vgzi(aT—a)

unit trace Gaussian opertor:

Az) =N (2) rexp|-A"Z|L- (Zz+ D) '] 4/2

— —

-1 0

HereN 2\1\/det _33:1:[ U I]andéisthe
2M x 2M identity matrix.
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(O) = /1;(. P (z,7)Tr [()A (é)] dx

We use the unordered differential identities derived from those
given previously to obtain the observable function O (z). We

consider the correlation function X,,,, given by:

R. R. Joseph, L. E.
R. R. Joseph, L. E.

Rosales-Zarate, P. D. D., Journal of Physics A: Mathematical and Theoretical 51, 245302 (2018).

C.
C. Rosales-Zarate, P. D. D., Physical Review A 98, 013638 (2018).



Classical domains of E. Cartan

1. The domain R; of m x n complex matrices with:
™ — 771 > 0.

2. The domain R;; of n x n symmetric complex matrices with:
[—-Z2Z">0.

3. The domain R;;; of n X n skew-symmetric (anti-symmetric)
complex matrices with: I + ZZ* > 0.

4. The domain Ry of n-dimensional vectors
z=(z1.22,...,2n), Where ,,k are complex numbers,
satisfying: ‘ T{—i—l—? >+ > 0, ‘st‘<1.




M-phase space

This is a REAL antisymmetric phase space:

Il

where n®* = n+n!, m*™ = m+ m* and nij = <&I&j>,

mij — <CALZCAL]>

zz' —[<0

Bounded real domain in
M(2M-1) =1,6,15,28,.. dimensions:




Hamiltonian

A~

N~
H = hwija;a;,

If we define the Majorana commutator as previously

| 0w

o l—w 0|

we can re-express the Hamiltonian in terms of Majorana
operators as

|t=;

. h .
H = §QWXW.



Time-evolution

/
dQ (z) d
T ot

d

dzy,, (

$m/Q) .

This leads to a character’istic equation for all stochastic

trajectories (P or Q) /
/d

T
=24



Finite
temperature

breathing
oscillations

* Oscillations triggered by a
sudden reduction In trap
frequency; non-interacting
Fermigasin 1D

t/6
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/Zero and finite temperature shock waves




Problems with quantum measurement

Measurement is regarded as a non-unitary projection
@ But how is a measurement defined?
@ Why is it different to unitary physics?
@ What if the observer is part of the universe?
@ How do we treat quantum cosmology?

@ Problem is not solved through decoherence

@ This does not project one eigenvalue




Quantum measurement discussed by Einstein, Bohr

Einstein and Bohr, at the Solvay conferences, 1927-1930.

Screenshot



What did Einstein believe?

Einstein: a physical theory must be
o Objective: in the sense of observer independent

o Local: in terms of fields in space and time

o Complete: all that exists should be included

. Screenshot s’




What about Bohr?

Bohr's ideas about

quantum theory

o Operational measurement
must be included

o Wave functions are
symbolic, not real

o Contextuality is
fundamental

v

Screenshot



These goals are not in contradiction!

ldeally a physical theory should be

o Objective: external entities exist

o Measurable: through physical operations
o Local: objects are localized in spacetime
o Consistent: no special treatment of measurement

o Stochastic: we only have partial knowledge

o Unified: observers are part of the universe




The Q-function proves objective models exist
QA1) = Tr{A(A)p (1)}

@ where P (t) is the quantum density matrix,
o A(1) = [1pf Ap (W) Af (x) is a positive-definite operator basis,
@ A is a point in the phase-space.

This must give an expansion of the Hilbert space identity operator I
so that, given an integration measure dA,

o = [A(A)dA.




Quantum fields

N—component bosonic field ¥ (r)

@ Defined with a space-time coordinate r, where
r=(rt,...r") =(r,t).

@ Quantum fields W; (r) are expanded using M operators a“,-,éf for
M /N modes.

@ The indices i include

@ N internal degrees of freedom




Projection operators

Bosonic case

For bosonic fields, A is proportional to a coherent state projector,

Ae)=|e), (/2"

The state |@). is a normalized Bargmann-Glauber coherent state
with §;|a). = a;|a). and

Y(x)[a)c =y(x)|a),

Hence, phase-space is composed of local fields in space-time.

A — Y(x)




This is a probabilistic representation

Every phase-space coordinate is a possible universe

o Each A (t) is a set of fields in space time
o Every A (t) is a possible universe

o [ here is only one objective universe




Observables

We can compute observables in the usual way

Quantum expectations <@>Q of ordered observables O are identical

to classical probabilistic averages (O) - - including corrections for
operator re-ordering if necessary - so that:

<é>Q — (0) = /dw(A)O(A).

We can also add a model of the measurement, which
models the growth of the observable to a macroscopic size.

v




Differential equations from operator
mappings

Operator correspondences—Fokker-Planck equation

Fokker-Planck equation is of the form:
: 1

However, D is not positive definite, and in fact Tr(D) =0, yet Q is
positive definite. This is because it corresponds to a simultaneous
positive and negative time evolution. This has boundary conditions in
the past and the future, and has a real action principle.




Amplification

Amplification is fundamental to measurement!

From the amplified macroscopic value X, with gain G the
experimentalist infers an eigenvalue of X = Xy +¢€/G, with a
probability distribution of

p(X) = (6/y/2m)) e (G2 (X~ %0) /2)

o Vacuum fluctuations relatively negligible at large gain,

allowing eigenvalue measurement.




Conclusions

Q function as a fundamental quantum theory
@ Can obtain exact quantum equations
@ Probabilistic
No requirement to collapse wave function
Observer can be included

o
o
@ Local fields in space and time
o

Unifies ideas of Bohr and Einstein?

PDD and Margaret Reid, arXiv:1909.01798
PDD, arXiv:1910.00001




