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> Introduction
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Graphite — Graphene

#J,_,..JR,,,..:H_; 3D graphite
- g W ST
.i“--ﬂa-—r""‘{“--..‘.-—-“‘.i-qj

Graphite
pencils

Discovered in
2004

Nobel Prize
awarded in
2010

Graphene is a one-atom-thick
(~3.35A) planar sheet of carbon
atoms that are packed in a
honeycomb crystal lattice
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Graphene: a new condensed-matter
system

Electron band structure in conventional Electron band structure in graphene
condensed-matter system

Energy E

* E=E_+ LS

-valley — *

% 2m
o
Wave vector
Heavy holes
Light holes

Graphene: Linear dispersion near the Dirac points




Novel properties

* Low electrical resistivity 1uQ-cm at room temperature

~33% less than Cu and Ag, the lowest-resistivity metallic materials

= Room temperature mobility up to 200,000cm?/Vs

electrons in graphene travel more than 100 times faster than
those in Si (~1400cm?2/Vs)

» Superb mechanical strength

breaking strength comparable to that of the diamond

= Superior thermal conductivity
Heat transfer ability ~10 times higher than Cu and Ag

= Optically transparent in the visible range: transparent

conductor
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Significant potential applications

high-frequency electronics stronger composite materials

_ (lighter but more crack-resistant aircraft)
BREVIA

Science, 327, 662 (2010)

100-GHz Transistors from
Wafer-Scale Epitaxial Graphene

Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu,
A. Grill, Ph. Avouris*

optoelectronic devices biosensors
(displays, touch screens, etc.) (disease diagnosis)
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How to make graphene?

Scotch-tape method
Observable color contrast
Mechanical exfoliation on 300 nm_i layer

i = 1 4 1
[
.

Scientific American NT-MDT
> Advantages: > Drawbacks: _
* high quality graphene flakes * low efficiency (tiny flakes)
* low cost * not suitable for large area production

required by electronic applications
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How to make large area graphene?

Growth on transition metal by
chemical vapor deposition (CVD)

e Growth temperatu re hydrocarbon molecules
900-1000°C crack on hot Cu surface
* Ethylene or methane ~ ‘

is used as C source

v
..

« Cuis a catalyst for
graphene growth
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How to make large area graphene?

chemical vapor deposition (CVD)

qppar'aTUS i ‘{ l quartz tube

mleté ) ") gas outlet
sample
c, H or CH quart/z" ‘ P

oven
> Advantages: > Drawbacks:
* large area graphene * lower quality than exfoliated
* reasonably low cost flakes (natural graphene)
* ease of processing * have to transfer to dielectric
substrates for electronic
applications
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Transfer of graphene from metal
surfaces onto dielectric substrates

— T
spin-coated — B
smgle layer graphene P iron chloride solution

withPMMA _—— —
E"‘-'-‘-}E‘.F: 4 |:> ; : é |:> H’J

Cu substrate __Yetchedaway
transferred onto 4}
glass or SiO, sl i

anneal or

rinse in 4 7 /4:. A 7=

acetone ;? |
Transfer'r'ed

ﬁ.‘w / gr'aphene
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Graphene after transfer

large area
613 um
impurities from
as-grown chemical etchant
on Cu foil
sidransferred
onto SiO,
raphene

The transfer process introduces impurities, defects, and
mechanical damages in graphene
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Natural graphene flake has higher
quality than CVD graphene

MR

MM 1lCwm
K. Novoselov, - X. Li, etal.,
et al., Science, Science, 324,
306, 666 (2004) 1312 (2009)

Natural graphene flake on CVD graphene on Cu foil

Si0;: transferred onto SiO,:
4~10,000-25,000cm?/Vs p~2000-5000cm?/Vs

We study CVD growth on single crystal Cu

r | tu " _
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Graphene

» Graphene on Cu single crystal surfaces
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Graphene growth on Cu single crystal

Chemical vapor deposition (CVD)
in UHV (STM) environment

« Growth temperature

(0]
900°C &£ 7 Current feed
- through
- Ethylene was used as o Cu single crystals
C source -y Pumped
UHV chamber

« Cu s a catalyst for
graphene growth
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Graphene on Cu single crystal surfaces

Graphene layers on Cu surfaces are strained

= strains in graphene on Cu single crystal (111)
and (100) surfaces are very different

= strain is released after transfer

The quality of CVD graphene on Cu single
crystal is high
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Inelastic light scattering:

Raman scattering
laser
% sample

Wout
spectromeYter\ o
Raman .

s
1 \ laser Win

On  Wout frequency

scattering frequency o, =w, —a,,

scattering wave vector k =k, —k,,

Raman scattering probes elementary excitations:

phonons, vibrations, electronic excitations, etc.
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Characterization of graphene by Raman
scattering

Measure optical phonons

Raman spectrum

''''''''''''''''

natural graphene 2D

fake on S0, ﬂ G-band (q—0 mode) at ~1580cm""
= (electron-phonon coupling)
% 2D-band (two-phonon mode) at
£ G ~2680cm! (monitors strain)

0 JL - J\J L D-band at ~1350cm* (due to

1400 1600 1800 2000 2200 2400 2600 2800 disorder)
Raman shift (cm'1)

]
| T’J
S AN
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CVD graphene on (111) Cu single

crystal
2D Raman band
30cm” « 2D Raman band is blue-
=] P shifted
< |ON u single
E crystal (111)
g . quality comparable to
B natural graphene! (similar
FWHM)
flake on SiO,

2650 2700 2750
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2D Raman band is very sensitive
to strain

mode softens under tensile strain

2D

€=0.77%

525+

2520 2560 2600 2640 2680 2720

Raman <hift (em™ "\

M. Huang, et al., PNAS, 106, 7304 (2009) 2600 2625 2650 2675 2700

Raman shift (ecm™)

T. Mohiuddin, et al., PRB, 79,
205433 (2009)

0%

Blue-shifts indicate
compressive physisorption strain
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CVD graphene on (111) Cu single

crystal
2D Raman band

30cm” « 2D Raman band is blue-
shifted

on Cu single
crystal (111)

* The blue-shift indicates
compressive strain due to
physisorption of graphene
on Cu

Intensity (A.U.)

flake on SiO2

2650 2700 2750
Raman shift (cm™)
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Growths on Cu (111) and (100) are
vastly different

D 1 y 1 y .G v llll| 2D I
Graphene on Cu (111):

 Narrower 2D band

- Larger 2D/G ratio

M}/\W "O/ \\N « Smaller D/G ratio

1300 1400 1500 1600 2600 2700
Raman shift ( cm

Intensity (A.U.)

Graphene on Cu (111) surface has
higher quality
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Graphene on Cu single crystal
Nonuniform strain
2D Raman band

llllllllllllllllll

« graphene on Cu (111):
2D band is broadened
on Cu (100) by 20%

30cm-

\wz - graphene on Cu (100):

— 2D band is broadened
cm-

N flakeonsio| by a factor of 2
2600 2650 2700 2750
Raman shift (cm’')

Strain is more uniform on Cu (111) surface

4 ..‘i.m'
P v
UnniveERrsITY oF NorTHERN lowa _
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Cu single crystal
Cu (111) hexagonal

Face-centered cubic
(FCC) structure

2.55A

Cu (100) square




Characterization by scanning tunneling
microscopy (STM)

» Image graphene surface at the atomic level

» Moire patterns (superstructure) appear when

* two periodic grids with different lattice
constants are overlaid

* two periodic grids are rotated with each
other




STM of graphene on
Cu (111) single crystal

In k-space E Moire — ECu —Eg,,

: - k]%loire = kéu +k;,. — ZkMoirekgr cos o
- 1 -
K ytoire | = 6”;”
ke = 0.255nm F=—>6~0°
k= 0.2416nm -

DEPARTMENT OF - lJ
HYsICS (LERIY)
UniveErsiTY oF NorRTHERN lowa



Graphene on Cu (111) single crystal
= Graphene honeycomb lattice with lattice constant of 2.46A

= Cu (111) hexagonal lattice with lattice constant of 2.55A

» Rotational angle 0 is almost zero

Quasi-epitaxial
growth
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Molecular dynamics (MD) simulations of
graphene on Cu (111) single crystal

Simulated superstructure C-C bond length simulation
R AL R = TN B ™ L,-0.005A

--------
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............
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..........
...............................
--------------------------

-------------------
..................
................

Lo-0.009A

= Compressive strain over the entire surface
= Strain varies between 0.3% and 0.6%
= Domain walls are highly compressed

HYsICS [LER Y
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Graphene on Cu (100) single crystal

Molecular Dynamics simulations
Superstructure C-C bond length

l L,+0.003A

|

Lo-0.005A

= No epitaxy: honeycomb graphene lattice on Cu
(100) square lattice

= Highly nonuniform strain that varies from 0.3%
compressive to 0.2% tensile

. ..‘i.m'
bt A
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CVD growth on Cu foil

« Growth temperature l i i l
1000°C quartz tube

mlet :) g_ioutlet
 Methane was used /'
sample
as C source uartz
C"' "'2 boat

oven

300pm 1.73um

polycrystalline and
rough surface
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CVD graphene on Cu foil
Release of strain

2D Raman band

Intensity (A.U.)

transferred
onto SiO2

flake on SiO2

2600 2650 2700 2750
Raman shift (cm™)

or>
,,
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after transfer onto SiO,:

« 2D band overlaps that of
natural graphene

« broadening related to
residual strain

H .
UnniveERrsITY oF NorTHERN lowa _



CVD graphene on copper substrates

» Raman and STM reveal degree of
perfection and strain

> Strain is dependent on Cu surface
orientation

> Release of strain after graphene is
transferred onto SiO, substrate

Nano Letters 12, 2408 (2012)




Graphene

» Nitrogen doped graphene




Nitrogen doped graphene

Doping: control electronic
@® Catom @ “pyridinic” N atom .
@ “graphitic” N atom @ properties of graphene

pristine graphene  N-doped graphene

Wei et al. Nano Lett. 9, 1752 (2009)

S
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Nitrogen doped gr'aphene
b

quartz tube

chemical vapor e gas outlet
deposition / =)

CVD . sample
(VD) z bo::“\ \

CH,+H
NH,, Ar
oven

« Copper foil is heated to ~1000°C

* NH;, CH,, H,, and argon gas are passed in with
appropriate ratio

« Doping level is controlled by the pressure of ammonia
gas
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Visualizing individual nitrogen dopants in
honeycomb lattice

10x10 nm

Substitution doping
(graphitic form)

Computed STM image
B. Zheng et al., ACS Nano 4, 4165 (2010)
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Raman scattering from nitrogen doped

2D

Raman Intensity (a.u.)

Pristine Graphene .

N-doped Graphene

Padand e I ° |
1900 2200 2500 2800

Raman Shift (cm™)

o

@ . o | )
1300 1600

graphene

G *1583cm”

Raman Intensity (a.u.)

1660

1540 1580 1620
Raman Shift (cm™)
= strong defect bands D and D’

= lower 2D/G ratio
* blueshift of G peak
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Raman characterization of carrier
density in graphene

G peak position 2D/6 ratio

Fermi energy (meY)

Charge density n (X10™ cm™)
g 4 o 4 —-r03 574 406 1] 406 574 703 i
T T T T 3_5 1 | | 1 | 1 | 1 | 1 | 1 |
1595} i i
m Dirac holes Dirac electrons %
— 115 @ a0+
E " | 8- . .é
o n -
:; . 1 2 25+ =
31590- i s =) 7 . o
2 ] i -" 10 g = 20+ a
E . g i : 6 ] ;o
2 titie ; - P T 15 o or
c 3 L] .
3 1585 F e + 3 s ¢ ¢4 s 3, 1.0 .""-""r ..-'.-ﬂ
L] - Eiii - : _." H‘y-.‘..-
Vo 0.5 -
n L F L ! | ! | ! | ! | ! | ! | ! |
-100 -50 50 1 0% =" -2 - 0 1 2 3 4

Blectron concentration (=102 em )
Das et al., Nature Nanotechnology
3, 210 (2008)

0
Gate voltage Vg (V)

Yan et al., Physical Review Letters
98, 166802 (2007)

lower electron (hole) density ¢um)
lower G peak frequency and higher 2D/G ratio

4 K.‘i.m'
e
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Raman mapping of nitrogen doped
graphene

depleted
boundary

fi'po.smon ',%

Lower dopant (nitrogen)
concentration at the
grain boundaries
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Estimation of average carrier
concentration

Distribution of G
peak position

Based on the shift in the

" pristine position of the G

peak in the Raman spectra
induced by doping, we
estimate that the carrier
concentrationis 5 1.5 x
10'2 cm-2

© N-doped

1581 1583 1585 1587 1589
G peak position (cm™)

Pises R
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Mobile carriers contributed by nitrogen
dopants

= Nitrogen dopants are randomly
distributed in the honeycomb
lattice

= N atom density ~1.3 x 1013 cm

= (Carrier concentration (estimated
by Raman) is 5 £ 1.5 x 10'2cm-2

-0.6A

Each graphitic N dopant contributes (on average)
~0.4 mobile carriers to the graphene lattice




Nitrogen doped graphene

» Individual nitrogen dopant was
observed in real space by STM. Most
of the dopants are graphitic forms

» Nitrogen concentration is lower at
grain boundaries

» Each graphitic nitrogen atom
contributes ~0.4 mobile charge
carrier (electron) into graphene lattice

Science 333, 999 (2011)




Outline

Topological insulator nanostructures
» Bi,Te; nanoplates
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Topological insulator (TT)
A

/
/

/7 .
con/dfuctor insulator

/
/
K4

opologic
insulato

>

Charge carriers on the surfaces or édges carry a net
spin and conduct electricity without much thermal

dissipation

— promising candidate for spintronics and quantum
computing devices which are based on spin transport

4 K.‘i.m'
I 4 - v
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Challenges in TI research

In 3D Tls, bulk characteristics
dominate their properties

Reduce its dimension:

enhance surface-to-bulk ratio

1D nanowires 2D nanoplates
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TI nanoplates
representative TI material: Bi,Te;

.l{
)

|

As-grown NP, 11 nm

nm
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Raman scattering from bulk Bi,Te; and
as-grown Bi,Te; NPs

lllllll E'2 T T T T T T Te1
Al, ’ Bi
— E1 Alzg
=] bulk Te?
<
=3 Bi
2 Te!
..°=.’. 11nm el | ?/
B E; Ailg
8nm
0 60 80 100 120 140 160
Raman shift (cm’)
4 Raman-active modes from bulk Bi,Te, ‘S ; 3
The out-of-plane modes are more l ,
|

sensitive to the reduction of thickness E A,
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Raman selection rules in crystals with
inversion symmetry

—1 Bi,Te; crystal lattice

Even-parity phonons (with
subscripts “g”) can be observed in
Raman scattering

wugy0 =9

Odd-parity phonons (with
subscript “u’’) can be observed In
infrared absorption
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Infrared-active modes observed in
Raman scattering from Bi,Te; NPs

Two new modes emerge

B A, A,
W ST T 8

Intensity (A.U.)

40 60 80 100 120 140 160
Raman shift (cm )

The emergence of /R-active modes in Raman spectra reveals

a breakdown of inversion symmetry in Tl nanostructures

UnnivERrsITY oF NorTHERN lowa _
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Robustness of vibrational properties of
Bi,Te; NPs

. 's-g';ro'wn' onm o asl-g'rovbn 11nm
— —— coated with PMMA| —
:5 Al | . Eg2 D
3:., Allg ! A" K A2 s
>, o i’ =
B A M .
c =
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Raman shift (cm™) Raman shift (cm™)

Vibrational properties preserve
after device fabrication

DEPARTMENT OF ‘({ :"
HYsICS [LER Y
UniversrTYy oF NorTHERN lowa



Transferred Bi,Te; NPs

As-grown 11 nm Transferred 12 nm

Mechanical
transfer to

remove
impurities
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Raman scattering from transferred
Bi,Te; NPs

Tr'ans_fer'rjed NPs |

— As-grown NPs

2
g
1
Al,
2
~ 4B} % =
5 g bulkk| 35 bulk
< <
- Fy
Fy 2
7,) ()
12nm| £ 11nm
&M =
c
8nm
7nm 40 60 80 100 120 140 160
Raman shift (cm’)

4 60 80 100 120 140 160
Raman shift (cm )

Infrared-active modes are absent in transferred NPSs:
absence of inversion symmetry breaking
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Absence of inversion symmetry
breaking
in transferred NPs

Possible reason:

The transferred NPs are the ones that stand on
edge on the substrate

strain applied by the substrate induce
inversion symmetry breaking in as-grown NPs

Nanotechnology 23, 455703 (2012)
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