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Vortices

definitions of winding numbers can be found in describing
topological defects [34] of continuous two-dimensional
spins, dislocations in crystals, and quantized vortices in
helium II [35]. This formalism describing polarization
vortices is also closely related to Berry phases in describ-
ing adiabatic changes of polarization of light [36,37] and
Dirac cones in graphenes [38].
Lasing emission through BICs are naturally vector

beams [21] (see Supplemental Material [33]), where the
polarization of the outgoing beam has a spatial twist around
the center. The order number of the vector beam is given by
the topological charge of the BIC.
In the example of Fig. 2, we show the topological

charges of BICs for a structure that has been experimentally
realized in Ref. [20]. In this example, there are five BICs on
the lowest-frequency TM-like band as shown in Fig. 2(a).
Details about numerical simulation are provided in the
Supplemental Material [33]. The mode profiles of the Ez
component for two BICs are shown in Fig. S1 showing
localization in the z direction. We numerically calculate
polarization vectors cðkÞ [39], which reveal five vortices
with topological charges of #1 at these five k points
[Fig. 2(b)]. The BICs and their topological charges can
also be identified from the nodal-line crossings and the
gray-scale colors of cx and cy [Fig. 2(c)].
The winding number of the polarization vector along a

closed path is given by the sum of the topological charges
carried by all BICs enclosed within this path [34]. When
system parameters vary continuously, the winding number
defined on this path remains invariant, unless there are
BICs crossing the boundary. Therefore, topological charge
is a conserved quantity. This conservation rule leads to
restrictions on the behaviors of BICs (see Supplemental
Material [33]). For example, as long as the Hermitian
system retains Cz

2T and σz symmetries (Fig. S2), a BIC can
only be destroyed through annihilation with another BIC of
the exact opposite charge, or through bringing it outside of
the continuum (below the light line).

The conservation of topological charges allows us to
predict and understand the behaviors of BICs when the
parameters of the system are varied over a wide range. First,
consider the lowest-frequency TM-like mode (TM1 band)
of a 1D-periodic structure in air shown in Fig. 3(a).
This grating consists of a periodic array of dielectric bars
with periodicity of a, width w ¼ 0.45a, and refractive
index n ¼ 1.45. Its calculated band structure is shown in
Fig. 3(b). When the thickness of the grating is h ¼ 1.50a,
there are two BICs on the kx axis, as indicated by the
radiative quality factor of the resonances [Fig. 3(c)]. The
polarization vector cðkÞ, also shown in Fig. 3(c), character-
izes both BICs as carrying charges q ¼ þ1. When the
grating thickness is decreased to h=a ¼ 1.43 (all other
parameters fixed), the two BICs move towards the center of
the Brillouin zone, meet at the Γ point, and deflect onto the
ky axis [Fig. 3(d)]. This is inevitable due to the conservation
of the topological charges: annihilation cannot happen
between two BICs of the same charge.
Annihilation of BICs is only possible when charges of

opposite signs are present. This can be seen in the lowest-
frequency TE-like band of the same structure [Figs. 3(e)
and 3(f)]. When h=a ¼ 1.04, there are two off-Γ BICs
with charge −1 and a BIC with charge þ1 at the Γ point
[Fig. 3(e)]. As h=a decreases, the two −1 charges move to
the center and eventually annihilate with the þ1 charge,
leaving only one BIC with charge q ¼ −1 [Fig. 3(f)].
Generation of BICs is also restricted by charge conser-

vation, and can be understood as the reverse process of
charge annihilation. We provide an example by considering
the lowest-frequencyTE-likemode in a photonic crystal slab
of n ¼ 3.6 with a square lattice of cylindrical air holes of
diameter d ¼ 0.5a (Fig. S3(a) in the Supplemental Material
[33]). As the slab thickness increases, BICs are generated
at the Γ point. Each time, four pairs of BICs with exact
opposite charges are generated, consistent with charge
conservation and C4v symmetry of the structure. With
further increases of the slab thickness, the eight BICs move
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FIG. 2 (color online). Characterization of BICs using topological charges. (a) Calculated radiative quality factorQ of the TM1 band on
a square-lattice photonic crystal slab (as in Ref. [20]), plotted in the first Brillouin zone. Five BICs can be seen. (b) Directions of the
polarization vector field reveal vortices with topological charges of #1 at each of the five k points. The area shaded in blue indicates
modes below the light line and thus bounded by total internal reflection. (c) Nodal lines and gray-scale colors of the polarization vector
fields [same coloring scheme as in Fig. 1(c)].
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cyðkÞ ¼ ŷ · huki, and the brackets denote the spatial
average over one unit cell on any horizontal plane outside
the slab. Note that cðkÞ is the projection of huki onto
the x − y plane; it points in the polarization direction
of the resonance in the far field, so we refer to cðkÞ as
the “polarization vector.”
A resonance turns into a BIC when the outgoing power is

zero, which happens if and only if cx ¼ cy ¼ 0. In general,
cx and cy are both complex functions of k, and varying
the wave vector components (kx; ky) is not sufficient to
guarantee a solution where cx ¼ cy ¼ 0. However, when
the Hermitian system is invariant under the operation Cz

2T,
implying that ϵðx; y; zÞ ¼ ϵ$ð−x;−y; zÞ, we show that cx
and cy can be chosen to be real numbers simultaneously; in
other words, the far field is linearly polarized (see
Supplemental Material [33]). Here Cz

2 is a 180° rotation
operator around the z axis, and T is the time reversal
operator. When the system also has up-down mirror
symmetry (σz), the outgoing waves on one side of the
slab determine those on the other; for such Hermitian
systems, BICs are stable because they correspond to the
intersections between the nodal line of cx and the nodal line
of cy in the kx-ky plane. Such a nodal intersection naturally
causes a vortex in the polarization vector field centered on
the BIC, as illustrated in Fig. 1(b), for the simplest case.
Along the nodal line of cx (or cy), the direction of cðkÞ is
along the y axis (or x axis), as illustrated in Fig. 1(b). As
one encircles the nodal intersection (BIC) in the kx-ky plane

each component of the polarization vector flips sign as its
nodal line is crossed so as to create a net circulation of%2π
in the polarization field. At the nodal intersection the
polarization direction becomes undefined, since at the
BIC there is zero emission into the far field. Conversely,
one could say that BICs cannot radiate because there is no
way to assign a far-field polarization that is consistent with
neighboring k points. Thus, robust BICs are only possible
when there is vorticity in the polarization field.
Vortices are characterized by their topological charges.

Here, the topological charge (q) carried by a BIC is
defined as

q ¼ 1

2π

I

C
dk ·∇kϕðkÞ; q ∈ Z; ð1Þ

which describes how many times the polarization vector
winds around the BIC. Here, ϕðkÞ ¼ arg½cxðkÞ þ icyðkÞ(
is the angle of the polarization vector, and C is a closed
simple path in k space that goes around the BIC in the
counterclockwise direction.The fields uk are chosen to
be smooth functions of k, so ϕðkÞ is differentiable in k
along the path. The polarization vector has to come
back to itself after the closed loop, so the overall angle
change must be an integer multiple of 2π, and q must
be an integer. Figure 1(c) shows examples of how
the polarization vector winds around a BIC with charge
q ¼ þ1 and also around a BIC with charge q ¼ −1 along
a loop C marked by 1 → 2 → 3 → 4 → 1. Similar
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FIG. 1 (color online). Stable bound states in the continuum as vortex centers of polarization vectors. (a) Schematics of radiation field
decomposition for resonances of a slab structure. The spatially averaged Bloch part of the electric field huki is projected onto the x-y
plane as the polarization vector c ¼ ðcx; cyÞ. A resonance turns into a BIC if and only if cx ¼ cy ¼ 0. (b) Schematic illustration for the
nodal lines of cx (green) and of cy (red) in a region of k space near a BIC. The direction of vector c (shown in arrows) becomes
undefined at the nodal line crossing, where a BIC is found. (c) Two possible configurations of the polarization field near a BIC. Along a
closed loop in k space containing a BIC (loop goes in counterclockwise direction, 1 → 2 → 3 → 4), the polarization vector either rotates
by angle 2π (denoted by topological charge q ¼ þ1) or rotates by angle −2π (denoted by topological charge q ¼ −1). Different regions
of the k space are colored in four gray-scale colors according to the signs of cx and cy. In this way, a BIC happens where all four gray-
scale colors meet, and charge q ¼ þ1 corresponds to the color changing from white to black along the counterclockwise loop C, and
charge q ¼ −1 corresponds to the color changing from black to white.
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magnitude	 to	 a	 negligible	 value.	 Consequently,	 εeff	≈μeff	 ≈1	 for	 an	 arbitrary	 assembly	 of	 such	wires.	We	

achieve	 this	 by	 tuning	 the	 geometry	 of	 the	 corrugation.	We	have	 seen	 that	 c0	 is	 almost	 independent	 of	

d2/d1,	while	the	ci	(i>0)	have	a	strong	dependence	on	d2/d1.	For	example,	the	white	line	(nodal	frequency	

of	c0)	in	Fig.	1E	is	almost	a	straight	vertical	line	that	does	not	change	with	d2/d1.	So	by	varying	d2/d1,	we	

can	 freely	 tune	 the	 nodal	 frequency	 of	 c1	 towards	 that	 of	 c0.	 Starting	with	 the	 configuration	 in	 Fig.	 1B	

where	r2/r1	is	fixed	at	0.01,	we	tune	the	ratio	of	d2/d1	from	1	to	~6.4	in	Fig.	1E.	The	nodal	frequencies	of	c0	

and	 c1	 coincide	 and	 the	 total	 scattering	 width	 decreases	 by	 five	 orders	 of	 magnitude	 to	 a	 record-low	

scattering	width	of	3.5×10-8	(which	eventually	will	be	limited	by	material	 losses	in	experiments).	At	the	

same	 time,	 μeff	 increases	 from	 0.65	 to	 1.0006.	 Consequently,	 the	 wave	 experiences	 no	 distortion	 after	

impinging	on	closely	arranged	wires	in	Fig.	1G	(compared	to	Fig.	1D).	This	means	arbitrary	composites	of	

such	wires	should	be	practically	invisible.	We	emphasize	that	such	an	alignment	of	nodal	frequencies	can	

robustly	occur	at	any	frequency	by	tuning	r2/r1	and	d2/d1	(see	supporting	information	Fig.	S2).	 	

	

Fig.	 3	Numerical	 results	 of	 the	 invisible	material	made	 of	 corrugated	metallic	wires.	 (A)	 Left:	 the	 geometry	 of	 a	modified	wire,	

composed	of	corrugated	conducting	square	wire	embedded	 in	a	dielectric	with	εr	=	3	and	a	 loss	 tangent	of	0.0013.	Top	right:	 the	

normalized	 scattering	 width	 (5×10-5	 at	 10	 GHz)	 under	 a	 normal	 plane	wave	 incidence	 along	 the	 x-axis	 with	 the	 unit-amplitude	
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to& all& the& interfaces& within& the& beam& width.& To& further& illustrate& this& unique& airZlike& material,& we&

performed&full&wave&simulations&on&a&network&of&wires&with&selected&wires&removed&to&represent&“ZJU”&

(Zhejiang& University.)& shown& in& Fig.& 2e.& Under& an& oblique& incidence& of& plane& wave& at& 10& GHz,& the&

steadyZstate& total& electric& fields& in& air& stay&undisturbed,& showing& a&perfect& invisibility.&Animation&of& the&

electric&field&propagation&can&be&found&in&Supplementary#Movies.&

&

Figure# 3# |# Experimental#measurements# of# the# fabricated# samples.&a,# Slab& samples& composed&of& closely&arranged&corrugated&

wires.#b,&Experimental&far&field&radiation&pattern&measured&for&a&single&layer&of&slab.&(I)&shows&the&experimental&setup,&(II)&and&(III)&



Eigen-value problem

Bloch solutions
Topology of uk in k space (B.Z.)

Ferrimagnetic
(gyromagnetic) material as  
Yttrium iron garnet (YIG)

T - breaking

& =
& () 0
−() & 0
0 0 1

Boson
- = 1 0

0 −1

∗

-2 = +1

Time-reversal symmetry

Lu, Joannopoulos, Soljačić
Nat. Photon. (2014) Review

i 0 2×
−2× 0

4
5 =ω 7 0

0 &
4
5



Band topology

kx

ky

!"($)

�	���������
��


Infinite variation

New degree of freedom
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numbers, which makes them topologically trivial. Mirrors with 
non-zero Chern numbers are topologically non-trivial.

The most fascinating and peculiar phenomena take place at the 
interface between two mirrors with different topological invariants. 
The edge waveguide formed by these two topologically inequiva-
lent mirrors (Fig. 1b, right) is topologically distinct from an ordi-
nary waveguide, which is formed between topologically equivalent 
mirrors (Fig. 1b, left). The distinction lies in the frequency spectra 
of their edge modes inside the bulk frequency gap. On the left of 
Fig. 1c, the two frequency bands both have zero Chern numbers, 
so they can directly connect across the interface without closing 
the frequency gap. However, when the two mirrors have different 
Chern numbers, topology does not allow them to connect to each 
other directly. A topological phase transition must take place at the 
interface: this requires it to close the frequency gap, neutralize the 
Chern numbers, then reopen the gap. This phase transition (Fig. 1c, 
right), ensures gapless frequency states at the interface: there must 
exist edge states at all frequencies within the gap of the bulk mir-
rors. The gapless spectra of the edge states are topologically pro-
tected; that is, their existence is guaranteed by the difference of the 
topologies of the bulk materials on the two sides. In general, the 
number of gapless edge modes equals the difference of the bulk 
topological invariants across the interface. This is known as the 
bulk-edge correspondence.

The topological protection of edge waveguides can also be under-
stood in reciprocal space. Figure 1d shows the dispersion diagrams 

of both ordinary (left) and gapless (right) waveguides. On the left, the 
ordinary waveguide dispersion is disconnected from the bulk bands 
and can be continuously moved out of the frequency gap into the 
bulk bands. On the right, however, the gapless waveguide dispersion 
connects the bulk frequency bands above and below the frequency 
gap. It cannot be moved out of the gap by changing the edge termi-
nations. Similar comparisons between the edge band diagrams are 
shown in Fig. 2. The only way to alter these connectivities is through 
a topological phase transition; that is, closing and reopening the bulk 
frequency gap.

The unidirectionality of the protected waveguide modes can be 
seen from the slopes (group velocities) of the waveguide dispersions. 
An ordinary waveguide (Fig. 1d, left) supports bidirectional modes 
because it back-scatters at imperfections. In contrast, a topologically 
protected gapless waveguide (Fig. 1d, right) is unidirectional as it 
has only positive (or only negative) group velocities. In addition, 
there are no counter-propagating modes at the same frequencies as 
the one-way edge modes. This enables light to flow around imper-
fections with perfect transmission — the light can only go forwards. 
The operating bandwidth of such a one-way waveguide is as large as 
the size of the bulk frequency gap.

From Dirac cones to quantum Hall topological phase
One effective approach for finding non-trivial mirrors (frequency 
gaps with non-zero Chern numbers) is to identify the phase tran-
sition boundaries of the system in the topological phase diagram, 
where the bulk frequency spectrum is gapless. Correct tuning of 
the system parameters thus open gaps that belong to different topo-
logical phases. In 2D periodic systems, these phase boundaries are 
point-degeneracies in the bandstructure. The most fundamental 
2D point degeneracy is a pair of Dirac cones with linear disper-
sions between two bands. In three dimensions, the degeneracies 
involve line nodes and Weyl points, which we will discuss later in 
this Review.

Dirac cones are protected, in the entire 2D Brillouin zone, by 
by ‘PT symmetry’, which is the product of time-reversal sym-
metry (T, Box 2) and parity (P) inversion. Every Dirac cone has a 
quantized Berry phase (Box 1) of π looped around it17,18. Protected 
Dirac cones generate and annihilate in pairs19–23. The effec-
tive Hamiltonian close to a Dirac point in the x–y plane can be 
expressed by H(k) = vxkxσx + vykyσz, where vi are the group veloci-
ties and σi are the Pauli matrices. Diagonalization leads to the solu-
tion ω(k)  =  ±√(vx

2kx
2  +  vy

2ky
2). Although both P and T map the 

Hamiltonian from k to −k, they differ by a complex conjugation: 
(PT) H(k) (PT)−1 = H(k)*. PT symmetry requires the Hamiltonian to 
be real and thus absent of σy, which is imaginary. A 2D Dirac point-
degeneracy can be lifted by any perturbation that is proportional 
to σy in the Hamiltonian or, equivalently, by any perturbation that 
breaks PT. Therefore, breaking either P or T will open a bandgap 
between the two bands.

However, the bandgaps opened by breaking P24 and T individu-
ally are topologically inequivalent5,25, as the bulk bands in these two 
cases carry different Chern numbers. The Chern number is the inte-
gration of the Berry curvature (F(k) in Table B1) on a closed surface 
in wavevector space. F(k) is a pseudovector that is odd under T but 
even under P. In the presence of both P and T, F(k) = 0. When either 
P or T is broken, the Dirac cones open and each degeneracy-lifting 
contributes a Berry flux of magnitude π to each of the bulk bands. 
In the presence of T (P broken), F(k) = −F(−k). The Berry flux con-
tributed by one pair of Dirac points at k and −k are of opposite signs. 
Integration over the whole 2D Brillouin zone always equals zero, 
and thus so do the Chern numbers. In contrast, in the presence of P 
(T broken), F(k) = F(−k). Here, the total Berry flux adds up to 2π 
and the Chern number equals one. More pairs of Dirac cones can 
lead to higher Chern numbers13. This T-breaking 2D quantum Hall 
topological phase is shown in red in the phase diagram of Fig. 2.
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Figure 1 | Topological phase transition. a, Six objects of different 
geometries can be grouped into three pairs of topologies. Each pair has the 
same topological invariant, known as its genus. b, Two waveguides formed 
by mirrors of different (right) and same (left) topologies. c, Frequency 
bands of different topologies cannot transition into each other without 
closing the frequency gap. A topological phase transition takes place on 
the right, but not on the left. d, Interfacial states have different connectivity 
with the bulk bands, depending on the band topologies of the bulk mirrors. 
Here, a is the period of the waveguide propagating along y, and ΔC is the 
change in Chern number between the corresponding bulk bands on the 
right and left of the waveguide. The magnitude of ΔC equals the number 
of gapless interfacial modes and the sign of ΔC indicates the direction 
of propagation.

REVIEW ARTICLE NATURE PHOTONICS DOI: 10.1038/NPHOTON.2014.248

© 2014 Macmillan Publishers Limited. All rights reserved

kx

ω

kx

ω

C = 0 C = 0

C = 1 C = 1



Large Chern numbers (Z)
3

S21 (Experiment)
F

re
q

u
e

n
cy

 (
G

H
z)

0.1 0.3 0.5

S12 (Experiment)

Magnetic field (T)
0.1 0.3 0.5

b

−90 −50 −10
2

4

6

8

10

12

a

−90 −50 −10

dB

−90 −50 −10

dB

c

C      =-4         B=0.161 Tgap

11.5

12

12

10

C      =-3         B=0.079 Tgap

9

8.58

C      =+2        B=0.445 Tgap

8.5

One Brillouin zone

C      =+1        B=0.079 Tgap
6

8

11.5

12

12

10

6

8

Bandstructure FT of mode profile

−90 −50 −10

dB

−90 −50 −10

dB

C      =+1 gap

C      =+2 gap

C      =-4 gap

C      =-3 gap

Figure 2. Experimental edge transmission measurement along the copper boundary. a) S21. b) S12. The bandgaps that are nontrivial have
direction-dependent edge transmission, because the interface of a nontrivial bandgap with a trivial bandgap (copper boundary) supports one-
way modes. In a) and b) this causes the nontrivial bulk bandgaps from Fig. 1c to be present in one direction (e.g. S12) and be absent in
the other (e.g. S21), which we highlight for the Cgap = �4 bandgap with black boxes. The trivial bandgaps around 4 GHz do not support
one-way modes, and so do not exhibit direction-dependent transmission. c) Experimental configuration with the antenna locations and the
copper boundary. Insets on the left and right side of a) and b) respectively show edge band calculations with the edge modes in red and the
bulk bands in blue. Each calculation applies to a) and b) even though each is shown on only one side. The number of one-way edge modes
corresponds to |Cgap| from Fig. 1a, while the sign of Cgap is consistent with the theoretical group velocity (from the edge mode dispersion)
and the directional transmission in a) and b).

To provide more evidence of the topological state of these
bandgaps and the one-way modes we modified the setup to in-
clude a highly conductive copper boundary at the edge of the
crystal. This boundary acts as a mirror with a trivial bandgap.
In Fig. 2a and Fig. 2b we present both the S12 and S21 pa-
rameters to describe the direction-dependent transmission of
the edge modes along the metal boundary. S12 refers to excit-
ing the second antenna and measuring with the first antenna,
while S21 is the opposite.

The bandgaps that are nontrivial (Cgap 6= 0) can be identi-
fied in Fig. 2 because they will have direction-dependent edge
transmission. Specifically the nontrivial bandgaps measured

in Fig. 1c will appear in either Fig. 2a or b, but not both. We
show this explicitly for the Cgap = �4 bandgap by highlight-
ing the direction-dependent transmission with black boxes.
This arises from the directional edge states as follows. In one
direction, the group velocity of the edge modes is opposite
that required to travel to the receiving antenna, so the trans-
mission measurement will record the bulk bandgap. However,
in the other direction, the group velocity of the edge modes
is in the same direction as is required to get to the receiving
antenna, so the bandgap will appear to be nonexistant. Trivial
bandgaps (Cgap = 0) around 4 GHz do not support one-way
edge modes, and so do not exhibit direction-dependent trans-
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FIG. 1. Bulk band structures of the BPI photonic crystal. A) The GDP is between the first four bands. B) The cubic unit cell of length a
consisting of four identical dielectric rods oriented along the bcc lattice vectors of (111) (red), (1̄11) (yellow), (11̄1) (blue) and (111̄) (green).
The rods go through (0,0,0)a, (0,0.5,0)a. (0.5,0,0)a and (0,0,0.5)a respectively. There are two glide reflection planes (Gx and Gy) in the
structure, invariant on the (001) surface. The top-view schematic illustrates the relations between the rods under operations of Gx and Gy. C)
The bcc BZ and its projection onto the (001) surface BZ. The transparent red box outlines the volume in the bulk BZ that projects to half of
the surface BZ. D) Bulk band structure showing that the GDP opens when magnetization is applied on the rods without breaking Gy.

they evolve into each other after a 2p transportation along the
Gy-invariant lines due to the fact that gy(k) =�gy(k+ 2p

a ). As
a result, the corresponding wavefunctions of the two branches
have the same winding as their eigenvalues—a unique prop-
erty of the half-lattice translation in glide reflections. Con-
sequently, the two frequency eigenvalues of the two Bloch
modes also switch values after transporting a period along the
invariant momentum lines, illustrated in Fig. 2A. Assume the
frequencies of the two modes are w+ and w� at an arbitrary
kx point (say kxa = 0). The frequency dispersions switch their
values at ka = 2p . This switch ensures a crossing point (red
dot) on X 0 �X and M0 �M respectively. We argue that these
two protected double-degeneracies give a Z2 classification of
the surface states [14]. Illustrated in the middle of 2A, there
are two topologically in-equivalent ways for these two point-
degeneracies to connect. The gapless connection is a signature
of the topologically nontrivial surface states protected by Gy.

We now break T in the BPI photonic crystal to open the
bulk bandgap without breaking the Gy. Shown in Fig. 1D,
the GDP at P point lift up into a bandgap when we apply al-
ternating magnetization on the rods along ẑ. These magne-
tization induces off-diagonal imaginary parts in the dielectric
constant (e) of materials with gyroelectric response [33]. (Fer-
rimagnetic materials of gyromagnetic response [16] give the
same results in Supplementary Information). Here µ = 1 and

e =

0

@
e// k 0
�k e// 0
0 0 ezz

1

A, where ezz = 11, e2
// � |k|2 = e2

zz [27]

and k is a non-zero imaginary number when the magnetiza-
tion (Mz) is present. In Fig. 1D, k =�10i,�5i,+5i,+10i for
the red, yellow, blue and green rods respectively. This config-
uration preserves Gy, because magnetization (magnetic field)
flips sign under a mirror (reflection) operation. The 2D plane
group of the resulting (001) surface is pg.

The (001) surface state, plotted in Fig. 2B, has a single
Dirac cone at point L on the M0 �M line, consistent with the
glide-reflection degeneracy in Fig. 2A. By varying the mag-
netization or rod radius without breaking Gy, the Dirac point
L moves along the Gy invariant line M0 �M. This single Dirac
cone at L is connected gaplessly with the bulk bands across
the band gap. In Fig. 2C, we restore Gx to coexist with Gy by
doubling the magnetization amplitude of the green and yel-
low rods (|k| from 5 to 10). The surface plane group becomes
p2gg. Due to this extra glide-reflection plane through Y point,
the surface Dirac cone is then pinned at Y on M0 � M. If
we break both glide symmetries by de-magnetizing the yel-
low rod, both glide planes of Gx and Gy are broken and the
surface plane group reduces to p1. The surface Dirac cone is
now gapped as shown in Fig. 2D. This demonstrates that the
gapless surface states are indeed protected by the glide reflec-
tion.

The principle of bulk-edge correspondence says that the
surface state is a holographic representation of the bulk topol-
ogy. We demonstrate this correspondence between the sur-
face states in Fig. 2 and the “hybrid Wannier centers” [15] of
the bulk bands below the bandgap computed in Fig. 3. This
approach is also known as the Wilson loops [34, 35]. The
hybrid Wannier function of each band is a spatially-localized
wavefunction along z, obtained from Fourier-transforming the
Bloch wavefunctions with respect to kz while keeping the
other two surface momenta. The z-position expectation values
of the hybrid Wannier wavefuntions, i.e., the hybrid Wannier
centers, are equivalent to the Berry phases of the bulk bands
below the gap along a loop in ẑ in the bulk BZ. In our bcc lat-
tice, this non-contractable loop (of length 4p/a) is the vector
connecting H and �H in Fig. 1C. This hybrid Wannier center
is well defined up to a lattice period of a/2 in ẑ, and similarly,
the Berry phase has a 2p phase ambiguity. The calculations
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FIG. 1. Bulk band structures of the BPI photonic crystal. A) The GDP is between the first four bands. B) The cubic unit cell of length a
consisting of four identical dielectric rods oriented along the bcc lattice vectors of (111) (red), (1̄11) (yellow), (11̄1) (blue) and (111̄) (green).
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The bcc BZ and its projection onto the (001) surface BZ. The transparent red box outlines the volume in the bulk BZ that projects to half of
the surface BZ. D) Bulk band structure showing that the GDP opens when magnetization is applied on the rods without breaking Gy.

they evolve into each other after a 2p transportation along the
Gy-invariant lines due to the fact that gy(k) =�gy(k+ 2p

a ). As
a result, the corresponding wavefunctions of the two branches
have the same winding as their eigenvalues—a unique prop-
erty of the half-lattice translation in glide reflections. Con-
sequently, the two frequency eigenvalues of the two Bloch
modes also switch values after transporting a period along the
invariant momentum lines, illustrated in Fig. 2A. Assume the
frequencies of the two modes are w+ and w� at an arbitrary
kx point (say kxa = 0). The frequency dispersions switch their
values at ka = 2p . This switch ensures a crossing point (red
dot) on X 0 �X and M0 �M respectively. We argue that these
two protected double-degeneracies give a Z2 classification of
the surface states [14]. Illustrated in the middle of 2A, there
are two topologically in-equivalent ways for these two point-
degeneracies to connect. The gapless connection is a signature
of the topologically nontrivial surface states protected by Gy.

We now break T in the BPI photonic crystal to open the
bulk bandgap without breaking the Gy. Shown in Fig. 1D,
the GDP at P point lift up into a bandgap when we apply al-
ternating magnetization on the rods along ẑ. These magne-
tization induces off-diagonal imaginary parts in the dielectric
constant (e) of materials with gyroelectric response [33]. (Fer-
rimagnetic materials of gyromagnetic response [16] give the
same results in Supplementary Information). Here µ = 1 and

e =

0
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and k is a non-zero imaginary number when the magnetiza-
tion (Mz) is present. In Fig. 1D, k =�10i,�5i,+5i,+10i for
the red, yellow, blue and green rods respectively. This config-
uration preserves Gy, because magnetization (magnetic field)
flips sign under a mirror (reflection) operation. The 2D plane
group of the resulting (001) surface is pg.

The (001) surface state, plotted in Fig. 2B, has a single
Dirac cone at point L on the M0 �M line, consistent with the
glide-reflection degeneracy in Fig. 2A. By varying the mag-
netization or rod radius without breaking Gy, the Dirac point
L moves along the Gy invariant line M0 �M. This single Dirac
cone at L is connected gaplessly with the bulk bands across
the band gap. In Fig. 2C, we restore Gx to coexist with Gy by
doubling the magnetization amplitude of the green and yel-
low rods (|k| from 5 to 10). The surface plane group becomes
p2gg. Due to this extra glide-reflection plane through Y point,
the surface Dirac cone is then pinned at Y on M0 � M. If
we break both glide symmetries by de-magnetizing the yel-
low rod, both glide planes of Gx and Gy are broken and the
surface plane group reduces to p1. The surface Dirac cone is
now gapped as shown in Fig. 2D. This demonstrates that the
gapless surface states are indeed protected by the glide reflec-
tion.

The principle of bulk-edge correspondence says that the
surface state is a holographic representation of the bulk topol-
ogy. We demonstrate this correspondence between the sur-
face states in Fig. 2 and the “hybrid Wannier centers” [15] of
the bulk bands below the bandgap computed in Fig. 3. This
approach is also known as the Wilson loops [34, 35]. The
hybrid Wannier function of each band is a spatially-localized
wavefunction along z, obtained from Fourier-transforming the
Bloch wavefunctions with respect to kz while keeping the
other two surface momenta. The z-position expectation values
of the hybrid Wannier wavefuntions, i.e., the hybrid Wannier
centers, are equivalent to the Berry phases of the bulk bands
below the gap along a loop in ẑ in the bulk BZ. In our bcc lat-
tice, this non-contractable loop (of length 4p/a) is the vector
connecting H and �H in Fig. 1C. This hybrid Wannier center
is well defined up to a lattice period of a/2 in ẑ, and similarly,
the Berry phase has a 2p phase ambiguity. The calculations
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The rods go through (0,0,0)a, (0,0.5,0)a. (0.5,0,0)a and (0,0,0.5)a respectively. There are two glide reflection planes (Gx and Gy) in the
structure, invariant on the (001) surface. The top-view schematic illustrates the relations between the rods under operations of Gx and Gy. C)
The bcc BZ and its projection onto the (001) surface BZ. The transparent red box outlines the volume in the bulk BZ that projects to half of
the surface BZ. D) Bulk band structure showing that the GDP opens when magnetization is applied on the rods without breaking Gy.

they evolve into each other after a 2p transportation along the
Gy-invariant lines due to the fact that gy(k) =�gy(k+ 2p

a ). As
a result, the corresponding wavefunctions of the two branches
have the same winding as their eigenvalues—a unique prop-
erty of the half-lattice translation in glide reflections. Con-
sequently, the two frequency eigenvalues of the two Bloch
modes also switch values after transporting a period along the
invariant momentum lines, illustrated in Fig. 2A. Assume the
frequencies of the two modes are w+ and w� at an arbitrary
kx point (say kxa = 0). The frequency dispersions switch their
values at ka = 2p . This switch ensures a crossing point (red
dot) on X 0 �X and M0 �M respectively. We argue that these
two protected double-degeneracies give a Z2 classification of
the surface states [14]. Illustrated in the middle of 2A, there
are two topologically in-equivalent ways for these two point-
degeneracies to connect. The gapless connection is a signature
of the topologically nontrivial surface states protected by Gy.

We now break T in the BPI photonic crystal to open the
bulk bandgap without breaking the Gy. Shown in Fig. 1D,
the GDP at P point lift up into a bandgap when we apply al-
ternating magnetization on the rods along ẑ. These magne-
tization induces off-diagonal imaginary parts in the dielectric
constant (e) of materials with gyroelectric response [33]. (Fer-
rimagnetic materials of gyromagnetic response [16] give the
same results in Supplementary Information). Here µ = 1 and
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and k is a non-zero imaginary number when the magnetiza-
tion (Mz) is present. In Fig. 1D, k =�10i,�5i,+5i,+10i for
the red, yellow, blue and green rods respectively. This config-
uration preserves Gy, because magnetization (magnetic field)
flips sign under a mirror (reflection) operation. The 2D plane
group of the resulting (001) surface is pg.

The (001) surface state, plotted in Fig. 2B, has a single
Dirac cone at point L on the M0 �M line, consistent with the
glide-reflection degeneracy in Fig. 2A. By varying the mag-
netization or rod radius without breaking Gy, the Dirac point
L moves along the Gy invariant line M0 �M. This single Dirac
cone at L is connected gaplessly with the bulk bands across
the band gap. In Fig. 2C, we restore Gx to coexist with Gy by
doubling the magnetization amplitude of the green and yel-
low rods (|k| from 5 to 10). The surface plane group becomes
p2gg. Due to this extra glide-reflection plane through Y point,
the surface Dirac cone is then pinned at Y on M0 � M. If
we break both glide symmetries by de-magnetizing the yel-
low rod, both glide planes of Gx and Gy are broken and the
surface plane group reduces to p1. The surface Dirac cone is
now gapped as shown in Fig. 2D. This demonstrates that the
gapless surface states are indeed protected by the glide reflec-
tion.

The principle of bulk-edge correspondence says that the
surface state is a holographic representation of the bulk topol-
ogy. We demonstrate this correspondence between the sur-
face states in Fig. 2 and the “hybrid Wannier centers” [15] of
the bulk bands below the bandgap computed in Fig. 3. This
approach is also known as the Wilson loops [34, 35]. The
hybrid Wannier function of each band is a spatially-localized
wavefunction along z, obtained from Fourier-transforming the
Bloch wavefunctions with respect to kz while keeping the
other two surface momenta. The z-position expectation values
of the hybrid Wannier wavefuntions, i.e., the hybrid Wannier
centers, are equivalent to the Berry phases of the bulk bands
below the gap along a loop in ẑ in the bulk BZ. In our bcc lat-
tice, this non-contractable loop (of length 4p/a) is the vector
connecting H and �H in Fig. 1C. This hybrid Wannier center
is well defined up to a lattice period of a/2 in ẑ, and similarly,
the Berry phase has a 2p phase ambiguity. The calculations
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normalized frequency range between 0.41 and 0.43.

of the Berry phases are detailed in the Supplementary Infor-
mation.

In the surface BZ, a gapless spectrum of Wannier cen-
ters (Berry phases) indicates a non-trivial bulk topology and
a gapless surface state. In contrast, a gapped spectrum repre-
sents a trivial bulk topology and the absence of gapless surface
states. This can be understood by the following intuitive ar-
guments. If there is a full gap in the spectrum of Wannier
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FIG. 3. Hybrid Wannier centers in the surface BZ indicating bulk
topologies and the connections of the surface states. (A) The gap-
less hybrid Wannier centers corresponds to the non-trivial surface
states (pg) in Fig. 2B. (B) The gapped bybrid Wannier centers corre-
sponds to the trivial surface states (p1) in Fig. 2D. The hybrid Wan-
nier centers corresponds to the p2gg surface in Fig. 2C is plotted in
the Supplementary Information.

centers, then there is a certain position in z where no state is
localized. Terminating the bulk at that plane results in a sur-
face without surface states — the trivial surface states. On
the other hand, if the Wannier center plot is gapless, then for
any surface termination there must be a localized surface state
at some surface momentum. The surface is hence gapless for
terminations at arbitrary z — a nontrivial surface. In Fig. 3,
we plot the Wannier centers of the two lowest bands along the
closed loop of X 0 �X �M �M0 �X 0 in the surface BZ. Fig.
3A depicts the hybrid Wannier centers calculated for the bulk
bands in Fig. 1D, whose surface state is shown in Fig. 2B.
Similarly, the hybrid Wannier centers in Fig. 3B correspond
to the surface states shown in Fig. 2D. The Wannier centers
are gapless in Fig. 3A, consistent with the existence of the
gapless single surface Dirac cone in Fig. 2B. In comparison,
the Wannier centers in Fig. 3B is gapped, also consistent with
the absence of topological surface states in Fig. 2D. These
data confirm the bulk-edge correspondence that the Wannier
centers for all bulk bands below the bandgap is homotopic to
the surface band structure of a semi-infinite system with one
open surface.

Single-Dirac-cone surface states are fully robust and do not
localize under arbitrary random disorders on the surface. This
has been discussed in 3D topological insulators where the sur-
face states remain delocalized under random impurities of any
type [12, 13]. In our case, although individual defects break
the glide reflection, their ensemble average do not. Intuitively,
if one local disorder generates a positive Dirac mass term
within a region on the surface, there must be a neighboring re-
gion where the mass term is negative. A chiral edge mode ex-
ists along the edge between two regions with opposite masses,
similar to the photonic one-way edge states [16, 33] analogous
to the quantum Hall effect. In the presence of strong disorder,
these chiral edge modes percolate the surface and the surface
states remain delocalized. The surface with a strong random
disorder can be mapped to the electronic states at the critical
point of a quantum Hall plateau transition, where chiral edge
modes between regions of different Landau-level filling fac-
tors percolate. The transmission rate of light on the surface
hence exhibits the universal scaling laws in the universality
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Figure 1: Ordinary and Gyroscopic Phononic Crys-
tals: (a) Schematic of the hexagonal lattice. The blue
and grey spheres represent concentrated masses m1 and
m2 = m1, respectively. The red and black straight rods
represent mass-less linear springs with sti↵ness k1 and
k2 = k1/20, respectively. The dashed cell is the primit-
ive cell of the lattice. (b) Unit cell for the ordinary (non-
gyroscopic) phononic crystal. (c) Band structure of the
ordinary (non-gyroscopic) phononic crystal. The inset is
the Brillouin zone. (d) Schematic of a gyroscope with the
top tip pinned to a mass in the lattice. (e) Unit cell for
the gyroscopic phononic crystal. (f) Band structure of the
gyroscopic phononic crystal (↵1 = ↵2 = 0.3m1) with the
Chern numbers labeled on the bulk bands. The frequencies
are normalized by !0 =

p
k1/m1.

between the masses in the lattices and the gyroscopes
induces an in-plane gyroscopic inertial force perpendic-
ular to the direction of U

tip

[23, 25, 27]:

F
g

= ±i!2↵U
tip

, (3)

where ↵ is the spinner constant that characterizes the
strength of the rotational coupling between two inde-
pendent inertias in the 2D plane. As a result, the mass
matrix in Eq. (1) becomes,

M̃ = M+

0

BB@

0 i↵1 0 0
�i↵1 0 0 0
0 0 0 i↵2

0 0 �i↵2 0

1

CCA , (4)

where ↵1 and ↵2 denote the spinner constants of the
gyroscopes attached to m1 and m2, respectively. We

note that the imaginary nature of the gyroscopic iner-
tial e↵ect indicates directional phase shifts with respect
to the tip displacements, which breaks time-reversal
symmetry.

We now consider the band structure of the gyroscopic
hexagonal lattice. Interestingly, we find that the ori-
ginal bandgap between the second and third bands first
closes into a Dirac cone at the K-points and then re-
opens as we gradually increase the magnitude of ↵1

and ↵2. In particular, for ↵1 = ↵1 = 0.07m1 the
gap is closed and a pair of Dirac cones at K-points
emerges, while for ↵1 = ↵1 = 0.3m1 the gap reopens,
as shown in Fig. 1f. We also note that this topolo-
gical transition at ↵1 = ↵1 = 0.07m1 is accompanied
by a band inversion [9] between the second and third
bands near the K-points (the complete process of this
topological transition is shown in the Supplementary
Materials [23]). Since each Dirac point carries a Berry
phase of ⇡ and there is a pair of Dirac cones in the
first Brillouin zone [28], we expect the total exchange
of Berry curvature between the two bands to be 2⇡, res-
ulting in one chiral edge state in the gap between the
second and third bands [17]. Similarly, we also observe
that the quadratic degeneracy found for the ordinary
lattice between the third and fourth bands at the Bril-
louin zone center (see Fig. 1c) is opened into a full band
gap when gyroscopic coupling is introduced (see Fig.
1f). Since such a quadratic touching carries a 2⇡ Berry
phase [29], there should be one chiral edge state in the
gap between the third and fourth bands. Importantly,
the fact that bandgaps in Fig. 1f are topologically-
nontrivial is confirmed by the non-zero Chern numbers
labeled on the bands (the calculations conducted to
compute these topological invariants are detailed in the
Supplementary Materials [23]). Therefore, in the fre-
quency ranges of these nontrivial bandgaps, we expect
gapless one-way edge states, whose number is dictated
by the sum of Chern numbers below the bandgap, in
agreement with our intuitive arguments of Berry phase.

To verify the existence of such one-way edge states,
we perform one-dimensional (1D) Bloch wave analyses
on a supercell comprising 20 ⇥ 1 unit cells, assuming
free boundary conditions for the top and bottom edges.
In full agreement with the bulk Chern numbers, the
band structure of the supercell shows one one-way
edge mode on each edge in both bandgaps. For modes
bound to the top edge (Fig. 2b), the propagation
can only assume negative group velocities (red solid
lines with negative slope in Fig. 2a). On the other
hand, the modes bound to the bottom edge (Fig. 2c)
possess positive group velocities (blue dashed lines
with positive slope in Fig. 2a). Since these edge modes
are in the gap frequency range where no bulk modes
may exist, they cannot scatter into the bulk of the
phononic crystal. Furthermore, their uni-directional
group velocities guarantee the absence of any back

lattice, the magnitude of the tip displacement of the each
gyroscope is given by

Utip ¼ h sin θ ≈ hθ ¼ hΘeiωt for jΘj ≪ 1; ð2Þ

where h and θ denote the height and nutation angle of
the gyroscope [Fig. 1(d)] and Θ is the amplitude of the
harmonic change in θ. Interestingly, the coupling between
the mass in the lattice and the gyroscope induces an
in-plane gyroscopic inertial force perpendicular to the
direction of Utip [24,25,27]:

Fg ¼ $iω2αUtip; ð3Þ

where α is the spinner constant that characterizes the
strength of the rotational coupling between two

independent inertias in the 2D plane. As a result, the mass
matrix in Eq. (1) becomes

~M ¼ Mþ

0

BBB@

0 iα1 0 0

−iα1 0 0 0

0 0 0 iα2
0 0 −iα2 0

1

CCCA; ð4Þ

where α1 and α2 denote the spinner constants of the
gyroscopes attached to m1 and m2, respectively. We note
that the imaginary nature of the gyroscopic inertial effect
indicates directional phase shifts with respect to the tip
displacements, which breaks time-reversal symmetry.
We now consider the band structure of the gyroscopic

hexagonal lattice. Interestingly, we find that the original
band gap between the second and third bands first closes
into a Dirac cone at the K points and then reopens as we
gradually increase the magnitude of α1 and α2. In particular,
for α1 ¼ α2 ¼ 0.07m1 the gap is closed and a pair of Dirac
cones at K points emerges, while for α1 ¼ α2 ¼ 0.3m1 the
gap reopens, as shown in Fig. 1(f). We also note that this
topological transition at α1 ¼ α2 ¼ 0.07m1 is accompanied
by a band inversion [9] between the second and third bands
near the K points (the complete process of this topological
transition is shown in the Supplemental Material [24]).
Since each Dirac point carries a Berry phase of π and there
is a pair of Dirac cones in the first Brillouin zone [31], we
expect the total exchange of Berry curvature between the
two bands to be 2π, resulting in one chiral edge state in
the gap between the second and third bands. Similarly, we
also observe that the quadratic degeneracy found for the
ordinary lattice between the third and fourth bands at the
Brillouin zone center [see Fig. 1(c)] is opened into a full
band gap when gyroscopic coupling is introduced [see
Fig. 1(f)]. Since such a quadratic touching carries a 2π
Berry phase [32], there should be one chiral edge state in
the gap between the third and fourth bands. Importantly, the
fact that band gaps in Fig. 1(f) are topologically nontrivial
is confirmed by the nonzero Chern numbers labeled on the
bands (the calculations conducted to compute these topo-
logical invariants are detailed in the Supplemental Material
[24]). Therefore, in the frequency ranges of these nontrivial
band gaps, we expect gapless one-way edge states, whose
number is dictated by the sum of Chern numbers below the
band gap, in agreement with our intuitive arguments of
Berry phase.
To verify the existence of such one-way edge states, we

perform one-dimensional (1D) Bloch wave analysis on a
supercell comprising 20 × 1 unit cells, assuming free
boundary conditions for the top and bottom edges. In full
agreement with the bulk Chern numbers, the band structure
of the supercell shows one one-way edge mode on each
edge in both band gaps. For modes bound to the top edge
[Fig. 2(b)], the propagation can only assume negative group
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(f)(c)
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FIG. 1 (color online). Ordinary and gyroscopic phononic
crystals: (a) Schematic of the hexagonal lattice. The blue and
grey spheres represent concentrated masses m1 and m2 ¼ m1,
respectively. The red and black straight rods represent massless
linear springs with stiffness k1 and k2 ¼ k1=20, respectively. The
dashed cell is the primitive cell of the lattice. (b) Unit cell for the
ordinary (nongyroscopic) phononic crystal. (c) Band structure of
the ordinary (nongyroscopic) phononic crystal. The inset is the
Brillouin zone. (d) Schematic of a gyroscope with the top tip
pinned to a mass in the lattice. (e) Unit cell for the gyroscopic
phononic crystal. (f) Band structure of the gyroscopic phononic
crystal (α1 ¼ α2 ¼ 0.3m1) with the Chern numbers labeled on the
bulk bands. The frequencies are normalized by ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1
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FIG. 1. Schematics of the structure. We emphasize that
the presence of metal planes and dielectrics is for a coherent
theoretical treatment and is not necessary for obtaining the
resulting in this paper.

frequency ω domain are

−iωϱ(r,ω) = −∇r ·J (r,ω), (1)

−iωJ (r,ω) = α(r)E(r,ω)− ωc(r)J (r,ω)× ez, (2)

where ∇r = ex∂x + ey∂y is the 2D Laplacian, ϱ(r,ω) is
the variation of 2D charge density off equilibrium, and
J (r,ω) is the induced 2D current density. α(r) is a
space-dependent function contributing to the local 2D
longitudinal conductivity, σ(r,ω) = iα(r)ω ; ωc(r) is the
local cyclotron frequency due to a generally nonuniform
static magnetic field, B0(r) = B0(r)ez, applied along
the ez direction. (See Methods for details.) E(r,ω) is
the electric field evaluated within the z = 0 plane. In the
nonretarded limit (taking the light speed c → ∞) [Ref],

E(r,ω) solely comes from the Coulomb interaction. For
a generic model system shown in Fig. 1, E(r,ω) is
connected to J (r,ω) via

(
Ex(q,ω)
Ey(q,ω)

)
=

2π

iωqξ(q)

(
q2x qxqy
qxqy q2y

)(
Jx(q,ω)
Jy(q,ω)

)
, (3)

in the 2D momentum space. Here, q = |q| =
√
q2x + q2y is

the magnitude of the 2D wavevector q = qxex+qyey, and
ξ(q) = 1

2 {ϵA coth(qdA) + ϵB coth(qdB)} is a q-dependent
screening function determined by the material constants
and structural geometry surrounding the 2DEG [Ref].
(See Methods for details.)

Bulk Hamiltonian and bulk modes. We first
investigate the uniform bulk case, which yields analytical
solutions. We let α(r) = α and ωc(r) = ωc be
constants. Strikingly, Eqs. (1–3) can be converted into
an effective Hamiltonian problem similar to that of a p-
wave topological superconductor. The Hamiltonian H is
block-diagonalized in the momentum space, acting on a
3-component generalized current vector J(q,ω),

ωJ(q,ω) = H(q)J(q,ω), J(q,ω) ≡

⎛

⎝
JR(q,ω)
JD(q,ω)
JL(q,ω)

⎞

⎠ .

In this equation, JR(q,ω) ≡ 1√
2
{Jx(q,ω) − iJy(q,ω)}

and JL(q,ω) ≡ 1√
2
{Jx(q,ω) + iJy(q,ω)} are the 2D

current components written in the right-circulating basis
eR = 1√

2
{ex + iey} and left-circulating basis eL =

1√
2
{ex − iey}, respectively. JD(q,ω) ≡ ωp(q)

q ϱ(q,ω) is

a generalized density component, where ωp(q) =
√

2παq
ξ(q)

is the dispersion relation of conventional 2D plasmons in
the absence of a magnetic field. (See Methods for details.)
In the long-wavelength limit q → 0, ωp(q) → vpq, in

which vp =
√

4παdAdB
ϵAdB+ϵBdA

is an effective plasmon velocity.

H(q) and its long-wavelength limit are

H(q) =

⎛

⎜⎜⎜⎜⎜⎝

+ωc
ωp(q)

q

qx − iqy√
2

0

ωp(q)

q

qx + iqy√
2

0
ωp(q)

q

qx − iqy√
2

0
ωp(q)

q

qx + iqy√
2

−ωc

⎞

⎟⎟⎟⎟⎟⎠

q→0−→

⎛

⎜⎜⎜⎜⎜⎝

+ωc
vp(qx − iqy)√

2
0

vp(qx + iqy)√
2

0
vp(qx − iqy)√

2

0
vp(qx + iqy)√

2
−ωc

⎞

⎟⎟⎟⎟⎟⎠
, (4)

where ωc is allowed to be positive or negative depending
on the sign of B0. Eq. (4) indicates that at
long wavelengths, vp and ωc are the only controlling
parameters; the specific choices of materials (ϵA and ϵB)
and structures (dA and dB) do not affect the qualitative
behaviors. In all our calculation below, we will simply

choose ϵA = ϵB = 1 and dA = dB = d.

We can verify that the Hamiltonian Eq. (4) respects
the particle-hole symmetry CH(q)C−1 = −H(−q), where
the particle-hole conjugate operator C in our circulating

4

ω / ω* ω / ω*

qyd

Configuration-I

Topological
edge state

b

qyd

Configuration-II

2nd
topological
edge state 1st

topological
edge state

c

0

Non-topological
edge state

x

ρ,Jy

2DEG (C = +1)Vacuum (C = 0)

Configuration-I: single domain

x

ρ,Jy

2DEG (C = +1)2DEG (C = −1)

Configuration-II: opposite domains

a

x

y

z

−10 −5 5 10 −10 −5 5 100 0

4

2

−4

−2

4

2

−4

−2

Bulk states Bulk states

0

FIG. 2. Schematics of the system configurations and numerically calculated bulk and edge spectra. a. Upper panel:
Configuration-I, a 2DEG is in contact with vacuum under a uniform magnetic field along the positive z-direction. Lower panel:
Configuration-II, a 2DEG is uniformly filled in the whole space but two opposite magnetic fields are applied along the positive
and negative z-direction. The edge-state profiles of density and current components are shown as well. For Configuration-II,
the two edge states have opposite symmetries. b. The spectra corresponding to Configuration-I. c. The spectra corresponding
to Configuration-II. The negative-frequency part reflects the redundant degrees of freedom of the real-valued classical field and
so is shaded.

whose right-hand side is always positive. Since we have
chosen !c = |!c| > 0, q

y

must be positive too. The
edge state is hence one-way propagating. (We discard
the unphysical solution  = q

y

which yields a null
wavefunction.) The physical solution is  = !c

vp
which

gives an edge-state spectrum,

!

(1)
edge(qy) = vpqy, (q

y

� 0) (14)

This is a gapless state running across the zero-frequency
band as shown in Fig. 2b. It is a bosonic analogue
to the chiral Majorana edge states in the topological
superconductor. Its wavefunction is

J(1)
edge(x, qy) /

0

@
� ip

2
1

+ ip
2

1

A
e

�!c
vp

x+iqyy
, (x > 0). (15)

The zero-frequency edge state at q

y

= 0 has the same
finite decay length  = !c

vp
and is well localized at the

edge, despite being degenerate with the flat middle band.
In Configuration-II as shown in Fig. 2a, we let the

2DEG have a constant electron density throughout the
whole space, (vp(x) = vp), but the magnetic field have
opposite signs in the two regions, (!c(x) = +|!c| > 0
for x > 0 and !c(x) = �|!c| < 0 for x < 0). This is
a novel configuration with �C = ±2 across the edge,
and permits two topological edge states. The boundary
conditions are J

x

|
x=0� = J

x

|
x=0+ and JD|

x=0� =
JD|

x=0+ , meaning that both the normal current and

density must be continuous across the edge. In our
long-wavelength approximation, the first edge solution
has the same spectrum and wavefunction as those of
Configuration-I, except for a symmetric extension of the
wavefunction into the x < 0 region (compare the upper
and lower plots of % and J

y

in red in Fig. 2a). The
second edge solution satisfies  = �q

y

, and so q

y

must
be negative to ensure  positive. This edge state is also
one-way with a spectrum,

!

(2)
edge(qy) = |!c|, (q

y

 0). (16)

Its wavefunction is

J(2)
edge(x, qy) /

0

@
1
2 ± 1

2
0

1
2 ⌥ 1

2

1

A
e

±qyx+iqyy
, (x ? 0). (17)

It is antisymmetric for J
y

as plotted in green in Fig. 2a.
The antisymmetry plus the continuity condition for JD

here make the density oscillations vanish identically, so
the second edge state carries only current oscillations
about the magnetic domain wall.
Figure 2b and c give our numerically calculated bulk

and edge spectra that are not restricted by the small-
q local approximation (see Supporting Information).
When q is small, the numerical results accurately agree
with our analytical derivation above. When q is large,
the 1st edge dispersion asymptotically approaches thep
q-like bulk bands and eventually connects to them

at q ! 1. The 2nd edge dispersion drops gradually

studied by Fetter and many others in 1970s
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