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Exponential complexity

Quantum technology

ULTRALOW temperatures down to 1nK )
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Exponential complexity

Quantum technology

ULTRALOW temperatures down to 1nK )

@ Quantum optics

@ Bose-Einstein condensates: atom ‘photons’

@ Quantum superfluid fermions: atom ‘electrons’

@ Optomechanics: interacting photons and phonons
@ Quantum circuits: microwave entanglement, QC
o EARLY UNIVERSE?
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for > 5 particles
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@ numerical diagonalisation?
intractable for > 5 particles
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for > 5 particles

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings

@ exact solutions
not applicable for quantum dynamics
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Exponential complexity

Atom correlation experiments
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Exponential complexity

Quantum transport and interferometry experiments
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Exponential complexity

General Hamiltonian with cold atoms

H= ﬁo-i-ﬁ/NT-

where Hp and Hjyt are the non-interacting and interacting parts of
the Hamiltonian respectively, so that Hy is a general linear
Hamiltonian.:

vw VUGS + U Vo Uy, | d3r

ms
and H;yT describes particle-particle interactions:

A == Z / / VLV sy W Usp d3rr

ss’
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Exponential complexity

Local Mode Operators

Assume that the annihilation and creation operators are localized
on a lattice {sk,rx} of species amd position indices, with lattive
volume AV, so that:

3 =VAVV,,,

In the case of bosonic (fermionic) fields, the commutators
(anticommutators) are defined as:

{8,597}, = &Y
{8,y = 0.

The continuum Hamiltonian is regained in the limit of a large
number of lattice sites:

| .
H(a" a)= lim Flw;a"d +-y;: 0| .
(a',4) N A VA

P. D. Drummond Quantum technology, group theory, phase space



Exponential complexity

Master equation

e H= Hsys + Hsys res + Hres
o Hyys is the isolated system Hamiltonian
° Hsys res = X CJA R + hc is the coupling of the system to the

reservoir
o H,es is the reservoir Hamiltonian

o [ is the amplitude decay rate of the system, caused by the
reservoir

@ The damping/gain operators /A\j are system operators coupled
to the reservoirs, with damping/gain constants [;.
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Exponential complexity

Master equation table

Damping operator (A;) | T; Physical interpretation
aj Y, | Linear (single-photon) decay
AT g Linear (single-photon) gain
Aj 3 }/Jp Phase decay
12 k;j | Nonlinear (two-photon) decay

@ All these terms typically occur in real quantum technology
experiments

@ Also have more complicated coupled-reservoir and high-order
damping

P. D. Drummond Quantum technology, group theory, phase space



Exponential complexity

Time evolution in position space

@ The density matrix p evolves as:

dp I Tr A N
%t lhs] 500
J
@ Here the Liouville terms are derived from the Golden Rule, and
describe coupling to the reservoirs:

N A~

Z[p]=20;p0] - 0/ 0;p —p O] O;

Q>

e For n-particle collisions: O; = [3; (r)]"
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Exponential complexity

Exponential complexity
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Exponential complexity

Exponential complexity

@ consider N particles distributed among M modes
o Number of quantum states:

(M+N—1)!

b= (M—1)IN!

o take N~ M ~500,000: D = 22M — 21,000,000
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Exponential complexity

Exponential complexity

@ consider N particles distributed among M modes
o Number of quantum states:

(M+N—1)!

b= (M—1)IN!

o take N~ M ~500,000: D = 22M — 21,000,000

@ More linear equations than atoms in the universe
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Exponential complexity

Exponential complexity

@ consider N particles distributed among M modes
o Number of quantum states:

(M+N—1)!

b= (M—1)IN!

o take N ~ M ~500,000: D = 22M — 21,000,000
@ More linear equations than atoms in the universe

1,000,000 + 51,000,000

e Can’t diagonalize matrix!
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Phase-space methods

Wigner: Nobel prize in physics, 1963

1963 Nobel Prize in Physics

@ one half to Eugene Paul Wigner,

o for his contributions to the
theory of the atomic nucleus
and the elementary particles,
particularly through the
discovery and application of
fundamental symmetry
principles

@ half jointly to Maria Goeppert
Mayer and J. Hans D. Jensen

o for their discoveries concerning
nuclear shell structure
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Phase-space methods

Implicit and explicit phase-space mappings

There are many phase-space methods with the implicit definition

b= /P(a)/A\p(a)dza

or the explicit definition
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Phase-space methods

Implicit and explicit phase-space mappings

There are many phase-space methods with the implicit definition

b= /P(a)/A\p(a)dza

or the explicit definition

Properties of Wigner/Moyal phase-space

@ Maps quantum states into classical phase-space o = p+ ix

o Advantage: complexity grows linearly with number of modes!
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Phase-space methods

Moyal arriving in Australia
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Phase-space methods

Classical phase-space time-evolution

Moyal showed how to calculate time-evolution!

@ Moyal brackets map quantum operators to differential
equations

e Famous correspondence with Dirac (who initially
prevented publication)

@ Widely used in many areas of physics and elsewhere
Problem for computers: Distributions can have negative values

e Later work of Husimi, Glauber, Sudarshan, Agarwal, Lax.
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Phase-space methods

Classical phase-space time-evolution
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Phase-space methods

Wigner phase-space time-evolution

Moyal showed how to calculate time-evolution!
@ Moyal: maps quantum operators to differential equations

@ Moyal showed the theory was fully equivalent to quantum
mechanics

e Famous correspondence with Dirac

Problem for computers: Wigner distributions have negative values
@ Gives a third-order Fokker-Planck equation
@ No stochastic equivalent, unless truncated

e UV divergence in 3D
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Phase-space methods

Wigner-Moyal phase-space

p= / W (o)A (a) d?a
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Phase-space methods

Wigner-Moyal phase-space

p= / W (o)A (a) d?a

Generates symmetrically-ordered operator products

@ Maps quantum states into 2M real coordinates: o = p+ ix,

@ Advantage: Closest to classical behavior

@ Problem: Nonpositive, UV divergent

P. D. Drummond Quantum technology, group theory, phase space



Phase-space methods

Operator identities

Differentiating the W projection operator gives the following four
identities:

SR - :;8in+a;]x
/a\nﬂ = :—;ai;;Jra,, a,,ﬂ
Rz, — ';8‘;”” A
Ast - '_;afxn+ ;]x
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Phase-space methods

Detailed equivalence

Mapping of characteristic functions

W(a) = - / oM, <eiz~(éfa)+iz*-(éﬁa*)>

Operator mean values

ATm an _ 2M *m N _ *m N
<a,. aj>SYM—fd ao M W(a)—<a,- aj>W

L]
—~
QL
==k~
I
—~
K
~
2

[
S
>
L
+
L
[\Y]

5) /2= (e o)y,
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Phase-space methods

Dynamical mappings

Mapping of dynamical equations

N

oW(e) 1 [ oy 9p iz-(a—a)+iz"-(8"—a")
5t _nzl\/l/d zlr Fre

Operator mappings

oajp—>(ocj+2aa)w
o paf — (o7 + 32 )W
o &p— (o -3%)w
° pa— (o352 ) W
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Phase-space methods

Example: Wigner function for a coherent state

Suppose we have a single-mode BEC in a coherent state

P =|ao) (0o

Hence:

W(Ot) _ 71]:'2/d22 <OCQ‘ eiz~(§—a)+iz-(§7”_a*) |O{0>

Solution with a little algebra

(]
W (a) = 2 2la-oof
T

e Exercise: show that this gives (a*a) =1/2 for a vacuum state
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Phase-space methods

Example: time-evolution of harmonic oscillator
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Phase-space methods

Harmonic oscillator solution

Solution by method of characteristics

o Exercise: Prove this!
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Phase-space methods

Fokker-Planck equations

General result of operator mappings:

aw_{ d 1 92 1 9

—— =l — A+ —-——Di+———-—T:; oo W
ot 90" " 29000 Tt 6 dmaezaay T }

Scaling to eliminate higher-order terms

x=a/VN

ow 1 9 1 92 1
EI {‘max/*f*max,-axj D +0 (N3/2> } w
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Phase-space methods

Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:
aw d 1 92
—— =X —=—Ai+-=——D; ; W
Jt { 90" 29000 ’J}

Equivalent stochastic equation

806,'
ot

= Ai+Gi(t)

where:

(Gi(1)& (1)) = Dyé (t—t')
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Phase-space methods

Example: BEC case

Result of operator mappings + truncation - for the GPE:

dy; (x)
dt

= [inwj— i [ Ul (x) Pdx =] w0+ VB (x.2)
the linear unitary evolution of the wave-function, is:

K = V2 /2m— V; (1)
while i(x,t) is a complex, stochastic Gaussian noise:

(G005 (.£)) = 8,5 (x—x) 8 (£~ )

e . . s )\ 1 3 /
o Initial fluctuations: (AW (x)AWV} (X)) = 564,67 (x —x')



Phase-space methods

Phase-space representation methods have many applications

Maps quantum field evolution into a stochastic equation

Can also be used to treat interferometry

°
°

o Advantage: No exponential complexity issues!
@ Mathematical challenge with Wigner method:
°

truncation error needs to be checked
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Phase-space methods

Coherence theory, lasers and phase-space

2005 Nobel Prize in Physics

@ one half to R. J. Glauber

o for his contribution to the
quantum theory of
optical coherence

@ one half to T. Haensch and J.
Hall

o for their contributions to the
development of laser-based
precision spectroscopy
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Phase-space methods

Glauber-Sudarshan Phase-space
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Phase-space methods

Glauber-Sudarshan Phase-space

p= [ P(e)]r) (ol e

Generates normal-ordered operator products

@ Maps quantum states into 2M real coordinates: o = p+ ix,

@ Advantage: No UV vacuum divergence

@ Problem: Singular for entangled states
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Non-classical phase-s; pace

+P PHASE-SPACE METHODS

_ ] o
= | Pl B) iy o

P. D. Drummond Quantum technology, group theory, phase space



Non-classical phase-space

+P PHASE-SPACE METHODS

_ ] o
= | Pl B) iy o

Enlarged phase-space allows positive probabilities!

@ Maps quantum states into 4M real coordinates:
a,B=p+ix,p +ix
@ Double the size of a classical phase-space

o Advantage: Can represent entangled states
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Non-classical phase-space

+P Existence Theorem

For ANY density matrix, a positive P-function always exists

P(a.B) = (22 B 52

P. D. Drummond Quantum technology, group theory, phase space



Non-classical phase-space

+P Existence Theorem

For ANY density matrix, a positive P-function always exists

P(a.B) = (22 B 52

Enlarged phase-space allows positive probabilities!

@ Advantage: Probabilistic sampling is possible

@ Problem: Non-uniqueness allows sampling error to grows with
time (chaotic)
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Non-classical phase-space

Operator identities

Differentiating the +P projection operator gives the following four
identities:

PN [0 1+
a,N = e +Bn| A
L n i
aA,,K = anﬂ
Aor = |2 tau|A
n - _aﬁn n
Aaf = B.A

Since the projector is an analytic function of both «, and ,, we
can obtain alternate identities by replacing d/da by either d/d o
or d/iday,. This equivalence allows a positive-definite diffusion to
be obtained, with stochastic evolution.
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Non-classical phase-space

Measurements

An important application of these identities is the property of
measurement. In order to calculate an operator expectation value,
there is a direct correspondence between the moments of the
distribution, and the normally ordered operator products. These
come directly from the fact that coherent state are eigenstates of

the annihilation operator, and that Tr [K(a,[)’)] =1

(@30 = [ [ P(@.B)(Br+-ar]d™ad?B.

P. D. Drummond Quantum technology, group theory, phase space



Non-classical phase-space

Weighted stochastic gauge equations

Exponential quantum problems — stochastic equations, eg
single-component Bose gas, S-wave interactions:

da K
ifi ;;X = [—2mV2+U067<ﬁz+ ihg 5;] Ol
. dBx K> .

e Can be used for bosons and fermions (with
modifications)

@ Many trajectories needed to control growing sampling errors

@ Choice of basis, ‘gauge’ and stochastic method is possible
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Non-classical phase-space

BEC collision:

correlations calculated y
from here vy=vy

~ second condensate
" produced by Bragg
, ’:,’optical)ransition

original
condensate

\

”lﬂwé‘toms scattered into
an = spherical shell
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Non-classical phase-space

Positive-P vs Truncated Wigner

T 300t .
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3D Truncated Wigner: diverges, +P: converges
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Non-classical phase-space

+P advantages and drawbacks
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Non-classical phase-space

+P advantages and drawbacks
o
o
o
o
]
o
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Advantage: Can treat exponentially large systems
First-principles approach WITHOUT factorization assumption
No truncation

No UV divergence at large k-value

Drawback: Sampling error grows in time

Can’t simulate unitary evolution for long times!



Extended phase-space

General phase-space approach
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Extended phase-space

General phase-space approach

Phase-space may be larger still!

~ =
@ Here A(A) must be complete

%
@ Quantum dynamics —Trajectories in A .
~ =
o Different basis choice A(4) — different representation
~ =
e Eg, positive P-representation: A(A1)=|a)(B|/(B||c)
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Extended phase-space

Trade-offs: distribution vs basis

AR}

~ O
Gp P + GA
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Extended phase-space

General M-mode Gaussian operator

Normally-ordered exponential of a quadratic form in the 2M-vector
mode operator 3= (a,a') — & , where « is a c-vector and a is the
vector of annihilation operators. Used for either bosons or fermions:

~ =

AKX =  exp {—652_155/2 -

=]

|

Quantum phase-space: =(Q2,a,0).
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Extended phase-space

What is the covariance?

lla
I

l+n m
mt 1+n’
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Extended phase-space

What is the covariance?

Eg, fermion case: representation phase space is

e Q= weight factor
@ n = number correlation - OBSERVABLE
@ m,m"= anomalous correlation - OBSERVABLE
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Extended phase-space

Weighted stochastic gauge equations

Exponential quantum problems — tractable stochastic
equations

dQ/dt=Q[U+ g -]
da/dt=A+B({—
Can be used for fermions AND bosons

Many trajectories needed to control growing sampling errors

is a gauge chosen to stabilize trajectories

A choice of basis, gauge and stochastic method is necessary
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Extended phase-space

ONE-DIMENSIONAL BEC
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Agreement of simulations with exact solutions
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Extended phase-space

Predicts: anomalous spatial correlations

1 Dimensional interacting Bose Gas
18L interaction strength ¢ = 1 i

T=e 2(T)=e"" = 2 +(z ~z-0)[ 1~cos(1/T) J2

z = exp(-8)
z = exp(-1)
T=20 25 000 trajectories
/ At=0.005
Lattice Size = 750

=8
System Length = 180
S 14r / Y o R
<
il
o
T=1.6
121 i
T=20/21
— ¥
1k — ————
0.8} B
1 1 1 1 1
0 0.5 1 1.5 2 25 3
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Extended phase-space

BEC QUANTUM DYNAMICS

Single-mode case:

ij—z = [\aﬁ*!+w+xﬁ§1(r)}a
B~ [lop+ 0 Vit
% = Qgi(n)

023

@ Unitary evolution of 10=° interacting bosons
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Extended phase-space

Time-reversal test: up to

o (a) Reversal
5!
g
5}
-10¢
0 0:2 0:4 0:6 0:8 1
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Extended phase-space
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Extended phase-space

SUMMARY

Phase-space representation methods have many applications J
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Extended phase-space

SUMMARY

Phase-space representation methods have many applications J

Enlarged phase-space makes them more powerful!

@ Maps quantum field evolution into a stochastic equation

@ Can also be used to treat genetics and population dynamics
@ Advantage: No exponential complexity issues!
°

Mathematical challenge:

e sampling error often increases with time,
e basis needs careful choice
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Extended phase-space
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