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Semiconductor Nanowires: Bridging the Macroscopic and
Microscopic Worlds
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1. VSL/PVD-directed growth of semiconductor nanowires and other 2-D nanomaterials (Graphene, Topological
Insulators); p—type and magnetic doping/modification of the nanowires;

2. Transport and opo—electronic property exploration of the nanowires and graphene;

3. Nanowire filed emitters; UV detection and solar cells based on nanowires; single DNA detection/sequencing based
on solid state nanopore.

4. Theoretical calculation of the low—-dimensional nanostructures.






What is Nanoscience and
Nanotechnology?
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Nanoscience

the study of phenomena and manipulation of
materials at atomic, molecular and macromolecular
scales, where properties differ significantly from
those at a larger scale.
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Nanotechnology

the manipulation, precision placement,
measurement, modelling or manufacture of
sub -100 nanometer scale matter.
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This is truly Nanoscience/Technology
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Giant Magnetoresistance of (001) Fe/(001) Cr Magnetic Superlattices

M. N. Baibich,® J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff
Laboratoire de Physique des Solides, Universite Paris-Sud, F-91405 Orsay, France

P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas
Laboratoire Central de Recherches. Thomson CSF, B.P. 10, F-91401 Orsay, France

(Received 24 August 1988)

We have studied the magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecular-
beam epitaxy. A huge magnetoresistance is found in superlattices with thin Cr layers: For example,
with tc, =9 A, at T=4.2 K, the resistivity is lowered by almost a factor of 2 in a magnetic field of 2 T.

We ascribe this giant magnetoresistance to spin-dependent transmission of the conduction electrons be-
tween Fe layers through Cr layers.
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FIG. 1. Hysteresis loops at 4.2 K with an applied field along
[110] in the layer plane for several (001)Fe/(001)Cr superlat-
tices: [(Fe 60 A)/(Cr 60 A)ls, [(Fe 30 A)/(Cr 30 A)lo, [(Fe
30 A)/(Cr 18 A)lso, [(Fe 30 A)/(Cr 12 A)lyo, [(Fe 30 A)/(Cr
9 &) )40, where the subscripts indicate the number of bilayers in
each sample. The number beside each curve represents the
thickness of the Cr layers.
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FIG. 2. Magnetoresistance of a [(Fe 30 A)/(Cr 9 A)lao su-
perlattice of 4.2 K. The current is along [110] and the field is
in the layer plane along the current direction (curve a), in the
layer plane perpendicular to the current {curve &), or perpen-
dicular to the layer plane (curve c¢). The resistivity at zero
field is 54 u0 cm. There is a small difference between the
curves in increasing and decreasing field (hysteresis) that we
have not represented in the figure. The superlattice is covered
by a 100-A Ag protection layer. This means that the magne-
toresistance of the superlattice alone should be slightly higher.
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FIG. 3 Magnetoresistance of three Fe/Cr superlattices at 4.2 K. The current and the spplicd field ure along the same [110] axis
in the plane of the layers.
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The Nobel prize in physics 2010
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This is truly Nanoscience/Technology
Manipulation in Quantum Optics

Serge Haroche David J. Wineland

Ecole Normale Supérieure in Paris University of Colorado Boulde

for ground-breaking experimental methods that enable measuring
and manipulation of individual qguantum systems.
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Pierre-Gilles de Gennes Georges Charpak Claude cohen Tannoudji Albert Fert Serge Haroche

1. 2012, Serge Haroche: for ground-breaking experimental methods that enable measuring and manipulation of

individual quantum systems.

2. 2007, Albert Fert: for the discovery of Giant Magnetoresistance .
3. 1997, Claude cohen Tannoudji: for development of methods to cool and trap atoms with laser light .
4. 1992, Georges Charpak: for his invention and development of particle detectors, in particular the multiwire

proportional chamber.

5. 1991, Pierre-Gilles de Gennes: for discovering that methods developed for studying order phenomena in simple

systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers.
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Why Nanowires

»Nanowires: ideal building blocks

for nanotechnology
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Why Nanowires ?
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Nanotechnology will extend CMOS scaling
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What is new of the Nanowires?
I 0 000

Quantum Wire

1) SEFARMI, Sidke RETHWITHRAIBIES;

e

2) SARBRBEMHIL, HRERFTITHRIFHSHRME,

3) ST RAEL, RARKLETRMOET KL ;

4) RI, FM, S SYEedTRIDES TR ;

5) RS TRATERRBIER LTHAEZBMH;

6) PAKRLBHDWEAREN, BHESRHKHMAP R T,




PFHYSICSHEWS
Gt braaking mews on

thaphyicalz cances
from aur websine

W L1 e s e sy
ch ‘il s el

stimuilates growih and actually bocsts over-
all wealth. At least, that's the conclusion of
two of the medels — one developed atthe

University of Cambridge, UE, and the ather

ot the Fond aziene Eni Enrico Mathe. a cen- Areyou working on the hottest topic in your field? Many
tre far sustainable-develapment research in scientists may think so, but it has been a tough assertion to prove
T[_I“D-L?" Tﬂ?&ﬁdﬁ E‘“Taﬁifﬁfsﬁ; — until now, that is. A German physicist has devised a way of
Ehbi:lgnp of up mg:?m over 100 years. answering the 'Hot or not? question for his discipline. If it stands
'S!P‘.f Bt:fum?dzt:uhe':_]mﬂtehpﬂl:lﬂks Wiﬂ up to scruting, itcould be used to rate topics across the sciences.
ing about si its, such as increass ; _
investment in new technalogies. In physics, the results show that hotness . meas ured I::nyr a
Ottmar Edenhafer, an econamist at the parameter known as m — correlates well with the promise of
Potsdamn Institute for Climate Impact future wealth... and that promise is greatest in nanotechnology.

Pesaarch inGermarny whio edited the issue

along with Grubb and others, systhe new

esimates of lost global DD are signifi- 1135 Carbon nanotubes kaser. Phrpsicizts hape they maght ane day farm

canily lower than previcus ones, which put = Sups-sirongrmateiakand  Siebass ofa quardum congubes:

the range at 3-15%. They suggest the price b tesingly fa st electmnic

wiill be a 1ot lower, agress Terry Barkar, an s the prtenfal 1?3 FI.I“H'H’IE&

aconomist whoe helped developed the appheabions of these tiny These sphem s of carban

Carnbridge model, especially as costswill carbantubes, disavensd in atams areattmding

b spread over 100 vears " 1991 am s enficing that signidicant s earchinienest.
The models are likely to influence the EnErpane s pauning maney intathe field. Burt the ladest ranking

rent rarart from tha Teterocrarmmantal rewards nean e, 50 S

YIEEHT 5T =

fFrelst became & predates nanatube s by
amund six years. Thedscoeery of fullenenss
earmed aMabe preeand seemed studies
af nurmeraws pofen fial uses, such as

P — e
'ASAWARLY 6.82 Giant
b g o 2 A s A e S it magnetoresistance
diov more, say the authors, particularly in Mot anew topic, but sl hot
terms of investmeant in energy technolo- 7.84 lQI.I-HII'I:I.III"I dots bemuset i ecanarmic
gies, whereit lags behind the United States. Anafer nanatechnalagy imparian e Mademn hard
But some econcmists are wary of the with ahugerangs of dnk drives wese rmade
resilts. Jag Edmonds of the Pacific Marth- poterial o botion s passiile by §edsoreery of

ﬂ.’- Thesetiny secks of gt magnetanes stamt

Washington, describes the models a5 a ..J semiconducior matesal, rrasderials, which showmarked talls inele drical
valuable “intellectual experiment”. But he = mesturing fs Bileasa few emimten e — mare than around 5% —whena
qiuestions the fact that most of the madeals nanametres somes, haee sbeadybes usedba  magnetic fisld i spphed Pesesrh s ane now
amphasize leaarning-by-doing — a process create dyess for ool Bialogists and new kindsof  aimingha ke hard disks even mare pawerful

wiest Mational Labaratory in Richland,



Technologies that may change the

future of the world
. S

Universal Translation (Z&/A#33%)
Synthetic Biology (ANL& R 4p5t)
Nanowires (gAkgk)

Bayesian Machine Learning (REK#M2E523)
T-Rays (T—#3)
Distributed Storage (ZF#H X&)
RNAi Therapy (3Z#EiXBRFIFTIT5%)
Power Grid Control (=234 )
Microfluidic Optical Fibers (#&Skw3sr)
Personal Genomics (S AZELAS)

Tech. Review, by MIT, USA, 2004
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Semiconductor Nanowires:
Real Quantum Wires

Supercurrent reversal Spin—orbit qubitin a
in quantum dots semiconductor nanowire

Leo Kouwenhiven
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Semiconductor Nanowires:
Real Quantum Wires
I -

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
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Ohm’s Law Survives to the
Atomic Scale
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Nano--wires: Big Applications
D -

Plasmon lasers at deep subwavelength scale
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Nano--wires: Big Applications
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Nano--wires: Big Applications
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Nano--wires: Big Applications
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Nano--wires: Big Applications

Sapphire

H WX BZh 29K 854F: Advanced Materials 2010; Advanced Materials 2011
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Nano--wires: Big Applications
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Mass-Synthesis of Nanowires

from the bottom
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Synthesis and characterization
of carbide nanorods

Hongjle Dal, Eric W. Wong, Yuan Z. Lu,
Shoushan Fan & Charles M. Lieber*

Department of Chemistry and Division of Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA

THE properties and potential applications of carbon nanotubes
filled with other materials have aroused much speculation'™.
Strategies for filling nanotubes include in situw growth in an arc
reactor using metal/carbon composites™® and the capillarity-driven
filling of open nanotubes using liquid reagents™*. Here we report
an alternative approach to the synthesis of nanoscale structures
based on nanotubes, in which the tubes are converted to carbide
rods by reaction with volatile oxide and/or halide species. In this
way we have been able to prepare solid carbide nanoscale rods of
TiC, NbC, Fe;C, SiC and BC, in high yield with typical diameters
of between 2 and 30 nm and lengths of up to 20 pm. Preliminary
studies show that these rods share the properties of the bulk
‘materials (such as magnetism and superconductivity), suggesting
that they might allow the investigation of the effects of confinement
and reduced dimensionality on such solid-state properties. These
carbide nanorods might also find technological applications in

red p

Our preparation of carbide nanorods involves the reaction of
carbon nanotubes with volatile metal or non-metal complexes
(Fig. 1). The carbon nanotubes used in these vapour-solid
reactions were obtained from metal-catalysed growth using ethy-
lene and hydrogen®. This procedure yields relatively pure nano-
tube samples compared with arc-discharge methods””, although
the nanotubes exhibit poor crystallinity (Fig. 2a). Previous
studics have also shown that 510 vapour can be used to convert
carbon fibres'” and nanotubes'' to SiC rods, although the sizes
of these SiC products were typically much larger than the carbon
precursor'’. In our studies discussed below, the diameters of
the solid nanorods are similar to the starting diameters of the

* To whom comespondence should be addressed.

NATURE - VOL 375 - 29 JUNE 1995

nanotube reactants and significantly smaller than reported
previously'™"". Furthermore, our general approach (Fig. 1) has
been exploited to prepare a wide range of chemically distinct
carbide materials.

The morphology and structure of the products obtained from
the reaction of TiO and carbon nanotubes at 1.375 °C are shown
in Fig. 2. Transmission electron microscopy (TEM) images of
the reaction product (Fig. 2b-d) show both straight and
smoothly curved, solid rod-like structures that are distinet from
the irregularly curved and hollow carbon nanotube reactant
(Fig. 2a). These images also show that the diameters of the rod-
like products are similar to that of the carbon nanotubes, 2
30 nm, and that the lengths typically exceed 1 pm. Energy disper-
sive X-ray fluorescence and electron energy-loss spectroscopy
measurements demonstrate that these nanorods contain only tit-
anium and sp’-hybridized carbon, and thus are consistent with
the conversion of the carbon nanotubes into titanium carbide
(TiC).

This formulation is further established by structural analyses.
Powder X-ray diffraction (XRD) measurements on nanorod
samples produced using either TiO or Ti+ [, show diffraction
peaks that can be indexed to the known cubic, rock-salt structure
of TiC with no evidence of either graphitic (nanotube), Ti-metal
or Ti-oxide peaks present. The measured lattice constant,
@=4.326 A, is consistent with a stoichiometry TiC,, with x=1
(ref. 12). TEM and electron diffraction studies of single nano-

]

+ MO, \”‘m:
[Pt Conbiie Newored_] + CO [l Gt Nomarod 1+ 2

MO = volatile metal or non-metal oxide
MX, = volatile metal or non-metal halide

yrepare metal carbide nanorods.

Nature,1995

Template confined Growth

FIG. 1 Reaction scheme used to prepare metal carbide nanorods.
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af foom femperature. [t appears that a pri-
mary function of the electron gas is to
sweep holes out of the system, terminating
the highly efficient electron-hole spin scat-
tering. The Kerr effect is an essential tool
for viewing this process, as the phenome-
non occurs for electrons above Ep and is
invisible to measures of spin relaxation such
as the Hanle effect or time-resolved PL,
which probe electrons near zero momen-
rum. This technique allows us to witness
spin lifetimes that far exceed the carrier
recombination time and draws an interest-
ing contrast to systems in which carrier
recombination depletes the spin polariza-
tion an order of magnitude faster than spin
relaxation processes (13, 18). We anuci-
pate further insights into these spin relax-
ation processes with the extension of the
time-resolved Kerr rotation technique to
doped [1I-V semiconductors where both the
elastic and inelastic scattering times are
typically two orders of magnitude greater
than in the samples studied here.
Although the observed precession reveals
a memory of the initial spin orientation
in the electronic system, its relation to
individual spin coherence is not clear. Al-
though electron-electron spin interactions of
the form sy, can destroy the coherence of
individual spins with their initial orientation
established by the optical field, they would
have no impact on the measured Kerr signal
because they do not alter the equations of
motion for total electronic spin. These “hid-
den” decoherences rely on the ahsence of
any spatial dependence to the spin interac-
tion that would then couple to the orbital
degrees of freedom, permitting spin relax-
ation. Because we cannot rule out such hid-

ﬁ.
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MO = volatile metal or non-metal oxide
MX, = volatile metal or non-metal halide

How to mass-produce nanowires from
the bottom?

Synthesis of Gallium Nitride Nanorods Through
a Carbon Nanotube-Confined Reaction

Weiqiang Han, Shoushan Fan,” Qunqing Li, Yongdan Hu

Gallium nitride nanorods were prepared through a carbon nanotube—confined reaction.
Ga,0 vapor was reacted with NH; gas in the presence of carbon nanotubes to form
wurtzite gallium nitride nanorods. The nanorods have a diameter of 4 to 50 nanometers
and a length of up to 25 micremeters. It is proposed that the carbon nanotube acts as
a template to confine the reaction, which results in the gallium nitride nanorods having
a diameter similar to that of the original nanotubes. The results suggest that it might be
possible to synthesize other nitride nanorods through similar carbon nanotube-confined

reactions.

The fabrication of nanometer-sized materi-
als has gained considerable attention because
of their potential uses in both mesoscopic
research and the development of nanode-
vices. Here, we demonstrate the synthesis of
crystalline GalN nanorods (nanowires) based
on the recently discovered carbon nanotubes
(1). GaN has promising applications for blue
and ultraviclet optoelectronic devices and
has attracted much attention recently after
the successful fabrication of high-efficiency
blue light—emitting diodes (71 Several an-
proaches have been develop

ing nanacrystallir
knowledge, the s @
{or nanowires) 1
date.

Department of Physic
lecular Sciences, Tsir
China.
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Recently, Dai et al. (4) reported an
approach to the synthesis of nanoscale
structures based on carbon nanatubes, in
which the nanatubes were converted inta
carbide (MC) nanorads by reaction with a
volatile oxide species. The reaction used
was expressed as

MO(g) + C(nanotubes) —
MC(nanoreds) + CO 1)

whera M) is a valarila meral ar nanmearal

Science 1997

Downloaded from www.sciencemag.org on Septe




Pioneer Work in Silic
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Solid Stats Communications, Vel. 105, No. 6, pp. 403-407, 1998 A Laser Ablation Method for the Synthesis of Crystalline
@ Pergamon Printed In Grens B s Scleace Lig Semiconductor Nanowires
0038~1098/98 519.00+.00 Alfredo M. Morales and Charles M. Lieber
Science 279, 208 (1998);
PII: S0038-1098(97)10143-0 AVAAAS DOI: 10.1126/science.279.5348.208

SYNTHESIS OF NANO-SCALE SILICON WIRES BY EXCIMER LASER ABLATION AT HIGH
TEMPERATURE

o v R \ \ , A Laser Ablation Method for the Synthesis of
P. Yu, C.S. Lee,” I Bello,” X.S. Sun,” Y.H. Tang,” G.W. Zhou,” Z.G. Bai,* Z. Zhang® and S.Q. Feng® Cr t ”-n S m - nd Ctor NanOWireS
"Depa:t%ent of Physics, National Key Laboratory of Mesoscopic Physics, Peking University, 100871 Beijing, China ys a | e e ICO u

epartment of Physics and Material Science, City University of Hong Kong, Kowloon, Hong Kong
“Beijing Laboratory of Electron Microscopy, Academia Sinica, Beijing 100080, China \

+ M. Morales and Charles M. Lieber*

September 1997; accepted 19 September 1997 by Z.Z. Gan)

elow synthesis of nano-scale silicon wires by using laser

igh temperature. By this approach we have been able to
on nano wires (SiINW’s) with a very high vield, a uniform
ibution and a high purity. The structure, morphology and
position of the SINW's have been characterized by using high
ray diffraction (XRD), high resolution electron microscopy
well as spectroscopy of energy dispersive X-ray fluorescence
results should be of great interest to researchers working on
hysical phenomena, such as quantum confinement effects
aterials of reduced dimensions and should lead to the
of new applications for nano-scale devices, together with
powerful method for synthesis of similar one-dimensional
d semi-conducting wire. © 1998 Elsevier Science Ltd

Yu DP, et al., Solid State Communications 1998, 105, 403.

er ablation cluster formation and vapor-liquid-solid (VLS) growth
synthesis of semiconductor nanowires. In this process, laser
apare nanometer-diameter catalyst clusters that define the size
LS growth. This approach was used to prepare bulk quantities
silicon and germanium nanowires with diameters of 6 to 20 and
actively, and lengths ranging from 1 to 30 micrometers. Studies
t conditions and catalyst materials confirmed the central details
n and suggest that well-established phase diagrams can be used
-alyst materials and growth conditions for the preparation of

Morales et al., Science 1998,279, 208.



VLS Directed Axial Growth of Silicon Nanowires
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Breakthrough in Oxide Nanowires
I -
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Amorphous silica nanowires: Intensive blue light emitters MgO: Nanostructured Materials 15, 1442, 1997
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Ultraviolet-emitting ZnO nanowires synthesized by a physical Thermal
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Applied Physics Letters 78, 407, January 2001

Catalytic Growth of Zinc Oxide Nanowires Thermal evaporation of
by Vapor Transport™* ZnO powder + graphite
By Michael H. Huang. Yiving Wu, Henning Feick, ) at 925 C.
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Ferromagnetic Ordering via Transition Metal

doping in Semiconductor Nanowires-DMS
I -

PHYSICAL REVIEW B 69, 075304 (2004) (a)

34 .
Luminescence emission originating from nitrogen doping of 5-Ga,0; nanowires \

5000e
Y. P. Song.! H. Z. Zhang.! C. Lin.? Y. W. Zhu,! G. H. Li’ F H. Yang.® and D. P. Yu'*
School of Physics, National Kay Laboratory of Mesoscopic Physics, and Electron Microscopy Laboratory, Peking University,
Beijing 100871, People's Republic of China
2Spex Fluorescence Jobin Yvon, Inc., Edison, New Jersey 08820, USA
3Semiconductor Institute, Chinese Academic of Sciences, Beijing 100083, People's Republic of China
(Received 9 September 2003; published 10 February 2004)

Nitrogen-doped 8-Ga,0; nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an
ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements
of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The Tenn
experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission 0
around 1.67 eV, with a characteristic decay time around 136 us at 77 K, much shorter than that of the blue T T L ]
emission (a decay time of 457 us). The time decay and temperature-dependent luminescence spectra were 0 0 40 60 80 1
calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the Temperature (K)
experimental data. This result suggests that the observed novel red-light emission originates from the recom-
bination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to 250

nitrogen doping. | (b) /
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P-ZnO Nanowire Doping
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ZnO Nanowire p-n Junction
D

Electrical and Photoresponse Properties
of an Intramolecular p-n Homojunction in
Single Phosphorus-Doped ZnO Nanowires

Ping-Jian Li, Zhi-Min Liae,! Xin-Zheng Zhang,! Xue-Jin Zhang,! Hui-Chao Zhu!
Jing-Yun Gao,t K. Laurent}? Y. Leprince-Wang} M. Wang,* and DarPeng Yu*t

Stare Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory,
School of Physics, Peling University, Beijing 100871, Peoples s Republic of China,
Labormtcire de Physique des Materimix Divises of Interfaces (LPMDN), CNRS-UMR
8108, Universite Paris-Est, 77454 Mame la Vallee Cedex 2, France, and Physics
Department, Hong Kong Undversity af Science and Techmology, Hong Kong

Recsived Novembsr 14, 2008, Rsvissd Manuscopt Recelved May 24, 2009

Nano Letters 9, 2513, 2009

ABSTRACT

The gingle-crystal ndype and p-type Znd nancwires (NWs) were synthesized via a chemical wapor deposition method, whene phoephone pantoxides
wag used ag the dopant source, The electrical and phoboluminescances studies reveal that phosphons-doped Znd NWe Zr0:P NWs) can bes changed
fram n-type to p4ype with ncreaging P concantration. Furthermane, we report for the firgt time the formation of an intramalecular p-n homojunetion
i & gingle Zn0:P NW. The p-n junction dicds has & high onioff current ratio of 25 < 10° and & low foraard turn-on volage of -1.37 V. Finally, the
phetoresponss properties of the diode were investigated under UV (325 nm) excitation in air st reom temperature, The high photecurrent’dark current
ratio (3.2 = 10% revealks that the diods hae & potertisl &= extrame sensitive UV photodetectars,
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P-ZnO Nanowire Doping
e .
Featured Articles

1. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor
deposition, Nano Letters 7: 323,2007,

2. Electrical and Photoresponse Properties of an Intramolecular p-n Homojunction in Single
Phosphorus-Doped ZnO Nanowires, Nano Letters 9: 2813, 2009;

3. First-principles study of the formation mechanisms of nitrogen molecule in annealed ZnO;
Physics Letters A 374: 34: 3546, 2010;

4. A Novel Way for Synthesizing Phosphorus-Doped Zno Nanowires, Nanoscale Research
Letters 6 : 45, 2011;

5. Compensation mechanism in N-doped ZnO nanowires, NANOTECHNOLOGY 21: 245703,

2011.
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Property Exploration of the nanowires

week ending

PRL 104, 146601 (2010) PHYSICAL REVIEW LETTERS 9 APRIL 2010

Evidence for Thermal Spin-Transfer Torque

Haiming Yu,'? S. Granville,! D.P. Yu,” and J.-Ph. Ansermet’
'Ecole Polytechnique Fédérale de Lausanne, IPMC, Station 3, CH-1015 Lausanne-EPFL, Switzerland
2State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China
(Recetved 1 December 2009; published 9 April 2010)

Large heat currents are obtained in Co/Cu/Co spin valves positioned at the middle of Cu nanowires.
The second harmonic voltage response to an applied current is used to investigate the effect of the heat
current on the switching of the spin valves. Both the switching field and the magnitude of the voltage
response are found to be dependent on the heat current. These effects are evidence for a thermal spin-
transfer torque acting on the magnetization and are accounted for by a thermodynamic model in which
heat, charge and spin currents are linked by Onsager reciprocity relations.

DOI: 10.1103/PhysRevLett.104.146601 PACS numbers: 72.15.J1, 75.60.Jk, 85.75.—d

[DUI03-1829(99)510604-4
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Property Exploration of the nanowires

Featured Article
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Nanowire Spin Filter, by EX# et al.
P y BEH Physical Review B 59, 1645, 1999

1] Physical Review B B 61, 16827, 2000

Physical Review B 59, R2498, 1999
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The crystal structural evolution of nano-S1 anode caused by lithium
insertion and extraction at room temperature

Hong Li®, Xuejie Huang®, Liquan Chen®*, Guangwen Zhou®, Ze Zhang”, Dapeng Yu°,
Yu Jun Mo®, Ning Pei®
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Field Emission Property of the Nanowires

Efficient field emission from ZnO nanoneedle arrays

Field emission from well-aligned zinc oxide
nanowires grown at low temperature , Lee, CJ;
Lee, Applied Physics Letters 81: 3648, 2002
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Field Emission Property of the Nanowires

I ©
APPLIED PHYSICS LETTERS 86. 203115 (2005) Featured Articles

Morphological effects on the field emission of ZnO nanorod arrays
Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu®

Electron Microscopy Laboratory and State Key Laboratory for Mesoscopic Physics, School of Physics,

Applied Physics Letters 83,144, 2003

Peking University, Beijing 100871, China App“ed PhySiCS Letters 72,1835’ 1998
(Received 4 Fehmarv 20050 accentad 6 Anril 2005 mahliched anline 12 Mav 2005)
APPLIED PHYSICS LETTERS 88, 033102 (20006) Applled PhySiCS LetterS 837 1689; 2003
Enhanced field emission from ZnO nanorods via thermal annealing Applied Physics Letters 85, 636, 2004
in oxygen ’ '
Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, and D. P. Yu® Applied Physics Letters 82, 4146, 2003

Electron Microscopy Labaratory, and State Key Laboratory for Mesoscopic Physics, School of Physics,

Peking University, Beijing 100871, China

C. P Liand L. Guo Applied Physics Letters 85, 636, 2004
School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing

100083, China

Applied Physics Letters 85, 5331, 2004

(Received 18 July 2005: accepted 22 November 2005: published online 18 January 2006)

To optimize the lield emission behavior of the ZnO nanorods, postthermal annealing in dilferent Applled PhYSiCS Letters 85, 5682, 2004
’ 2

ambhience was conducted. The field emission properties of the ZnO nanorods are considerably

improved after annealing in oxygen and getting worse when annealing in air or ammonia.

Photoluminescence and Raman spectroscopy were employed to elucidate the reason for such a Applied Physics Letters 86, 193101, 2005 ;
significant improvement of the ficld emission when annealing in oxygen. Those detailed analyses o ’

suggested that oxygen annealing can reduce the oxygen vacancy concentration, improve the crystal

quality, lower the work function, and increase the conductivity of the ZnO nanorods. Our work is App“ed PhySiCS Letters 86, 243103 , 2005 ;
important for applications of ZnO nanorods as a promising candidate in flat panel displays and high
brightness electron sources. © 2006 American Institute of Physics. [DOIL: 10.1063/1.2166483] Applled PhySiCS Letters 86, 203115, 2005 :

’ ’ ’

Applied Physics Letters 88, 033102 , 2006 ;
Journal of Applied Physics 93, 5602, 2003 ;
J. Amer. Chemical Society 127, 12452, 2005

J. Amer. Chemical Society 127, 1120, 2005




Nanowire Devices
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Resistance Switching based on Ni/NiO Core-shell Nanowire )
Nano Letters 11, 4601 (2011) Self-powered Nanodetector based on Nanowire
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Flexible Nanowire Solar Cells Flexible Power Generation/Storage Sources
Advanced Functional Materials 22, 4284 (2012) Nano Letters 13, in press (2013)
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Our Contribution to Nanowire Research
I S

 Leading contribution in developing method to synthesize 1-
dimensional semiconductor nanowires, and to
characterize/explore their novelty in properties and potential

applications.

« 365 peer-reviewed papers, including Applied Physics Letters(75),
Physical Review B/Letters(16), Advanced Materials(11l), Nano
Letters(7), and JACS(8).

 More than 10000 citations by colleagues worldwide, with a H index

= 55.

« More than 60 graduates and postdoctoral associates were

systematically trained here; 3% F4 “T AiR” A4 ZA.
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1. Strain modification on the emission

energy in ZnO Nano/microwires




Strain Effect in Materials
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Size effect in mechanical properties of Ag nanowires

450

w] F (d) ]
300-: F (OO)

250 +
200 +

150 —

Bending modulus (GPa)

100

T T T T T T T T T T T T
0 20 40 60 80 100 120
Diameter (nm)

B00 [rm]

G.Y. Jing et al., Physical
Review B 73, 235409(2006)




Size effect in mechanical properties of ZnO and SIC nanowires
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Strain Effect in Nanostructure
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Why Bending ? —very rich physical Phenomena
I .

Strain tuned band—gap Metal-insulator transition Nanogenerators
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Localized cathodoluminescence investigation
on single Ga,O5 nanoribbon/nanowire
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Principle of the CL in semiconductors

(a) : Band structure with defect levels;
(b) : Excitation;
(c) : Recombination

Low temperature CL analysis can reveal the fine
electronic structure of the semiconductor materials.



Cathodoluminescence (CL)
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Nanophotonics
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Cathodoluminescence Setup
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Strain Modification of the Electronic structure of
the semiconductor nano/microwires
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Elastic Bending Deformation
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Peak shift and broadening as function of
the bending strain
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Peak shift and broadening as function of

the bending strain
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In situ TEM Analysis




Radial Peak Shift under tensile and
compressive strain




Radial Peak Shift under tensile and
compressive strain
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Scan step under consideration
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Diffusion of electrons  Electron beam: <1 nm Diffusion Length of exciton

Scan step: 100 nm



Radial Peak Shift under free bending
Strain-Gradient Effect
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Simulation of the standard 3 point
bending strain  d=2.0um
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CL spectra at 81 K
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Peak Energy vs Strain gradient
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Recover of the peak shift after strain release



Strain induced exciton fine-structure
splitting and shift in bent ZnO microwires
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CL Mapping at
different
wavelength

CL intensity {a.u.)

360 370 380
Wave length (nm)

W e E "o

[ R R S

:
< =] A =] i (=) “p = n =3 [’y =
© 8 8 8 & 8§ 2 8§ 8 8 £¢8

j 368.4~369.1 nm | B 373.3~374.8 nm

3 000

§ 375.2~376.8 nm RGB image

6 0
X (um) X (um)

—1 000




Systematic Shift and Splitting (strain)
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Systematic Shift and Splitting (strain)
I

' tensile
[
[

compress|ive

WA
I
strain fre
A
I
| _
3.3 3.4

Normalized Intensity

CL Intensity (a.u.)

R

BT =

433 34
Photon ener

|
el
~—a
(%)
I

Photon Energy (e\
(eV) <




Systematic Shift and Splitting (strain)
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Systematic Shift and Splitting
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Strain induced valence band splitting
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Lattice distortion induced crystal field deformation
which causes the valence band splitting



Strain induced Band Gap Change
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Summary
I B

v Cathodoluminescence spectroscopy is a very
useful technique for precise and delicate
characterization in nanostructures

v' High spatial resolution of the CL enables us to
correlate the finest modification of the strain

effect in semiconductor nano/microwires.






