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The materials with both strong
inferaction and spin-orbital coupling:
5d compounds

® Sr2IrO4: Mott insulators with AF order

@ A2Ir207: Pyrochlore lattice with possible
Weyl fermions

@ Na4Ir308: frustrated spin system

@ Na2IrO3: Topological insulator?




challenge fo the electronic structure
calculations

@ rotational invariant form of the local
Coulomb interaction

@ LDA+DMFT: sign problem mostly induced by
the spin orbital coupling

® LDA+Gutzwiller: generalized Gutzwiller
projector




outline of this talk

@ Two possible Mott insulators in 5d systems:
BaOsO3, NalIrO3

@ Three band (+2g) Hubbard model with spin
orbital coupling

@ two key questions: 1)How the nature of Mott
transition will be changed by SOC; 2) How
SOC will be changed by interaction

@ calculations for the realistic materials




New material: BaOsO3




Experimental geometrical structure
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Observed (crosses), calculated (solid line), and difference synchrotron X-ray powder

diffraction patterns of BaOsOs at 300 K. Bragg reflections are indicated by tick marks.
The lower tick marks are given for reflections from the Os impurity (2.9 weight %).

Space group Pm-3m (no. 221)
a=b=c=4.02573(1) A




Physical properties: exper.
measurements
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First-principles calculations:
within GGA
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First-principles calculations: within
GGA+SOC

Starting from both Non-magnetic and
Ferro-magnetic configureation, GGA
+SOC calculations converge to the same
Non-magnetic state.
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First-principles calculations: within
GGA+SOC+U (U=3.0eV)
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Post-perovskite NalrO,




Experimental geometrical structure
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Physical properties: exper.
measurements
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First-principles calculations: within
GGA

Non-magnetic case
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GGA+SOC+U predicts AF insulator only
when U>7.0eV!




Conclusion from GGA+SOC+U
calculation for the both materials

@ The insulating states in both materials can
only be obtained with GGA+SOC+U only
when U>7.0eV, which is highly unrealistic

@ Hartree-Fock mean field theory can not
describe this featureless insulating state




The Crystal field splitting
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Two different schemes to couple the spin and
orbital degree of freedom for many electrons

JJ coupling

j=1/2

j=3/2

J"2=0
UJH< A

LS coupling

L"2=1(1+1);S" 2=1(1+1);J" 2=0
UJH> A




General tight-binding Hamiltonian
Three-band Hubbard Model With SOC:

H=Ho+ Hgso + Hy
Kinetic Energy Terms:

HO T Z taad;raa J,ao
i1#j,a0

Spin-Orbit Coupling Terms:
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Coulomb Interaction Terms:
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Many body techniques used here

@ Dynamical mean field theory (DMFT) with
continuous time quantum Monte Carlo
method as impurity solver

@ Generalized Gutzwiller approximation




Rotational Invariant Gutzwiller Approximation

Gutzwiller variational wavefunction:

W) = P|To) H’PRI\I/o
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I'): eigenstates of atomic hamiltonian H;
Uo: uncorrelated wave function (Wick’s Theorem holds)

Pr: projector operator modify weight of local configuration

Gutzwiller Constraints:

(To|PTP|To) =1

(To|PTPnia|To) = (To|nia|To)




Total Energy In Gutzwiller Wavefunction:
EY = Egin + Ejge = (Va|Ho|Ve) + (Ve|(Hu + Hso)|Ve)

Gutzwiller variational Procedure(Fixed n° Algorithm):
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The Lagrange parameters 7, come from Guztwiller Constraint.
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Figure: Phase Diagram at plane of U and SOC ( for J/U = 0.25 (a)
RIGA (b) DMFT(CTQMC)
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Figure: Energy and Quasiparticle weight as function of 0 < §n° < 1 at
fixed SOC (s, = 0.7 and different U = 1, 3,6, Derived by RIGA
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Figure: Expectational value of L2, S2, J? as function of U with fix SOC
¢ = 0.7, Derived by DMFT+CTQMC

2.0

(a)
~19t

—_——
™

—~—

1.8

217

1.6




The effective spin orbital coupling modified by

Figure: Effective spin-orbit coupling (¢ as function U at fixed
¢ =0.1,0.5,1.5, derived by HFA and RIGA
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LDA+DMFT calculation for BaOsO3
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The phase diagram of NalrO3
obtained by LDA+Gutzwiller
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Conclusions and outlook

@ Both BaOsO3 and NalIrO3 are non-magnetic
Mott insulators with the formation of local
spin-orbital singlets

@ The exact cancelation of spin and orbital
moments

@ doping? Possible exotic superconducting state

@ magnetic solution?




